Abstract
As a huge amount of tweets become available online, it has become an opportunity and a challenge to extract useful information from tweets for various purposes. This chapter proposes a novel way to extract topical structure from a large set of tweets and generate a usable summarization along with related topical keywords. Our system covers the full span of the topical analytics of tweets starting with collecting the tweets, processing and preparing them for text analysis, forming clusters of relevant words, and generating visual summaries of most relevant keywords along with their topical context. We evaluate our system by conducting a user study and the results suggest that users are able to detect relevant information and infer relationships between keywords better with our summarization method than they do with the commonly used word cloud visualizations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Engelbrecht, A.: Computational Intelligence: an Introduction. Wiley, Chichester (2007)
Chen, S.M.: Evaluating weapon systems using fuzzy arithmetic operations. Fuzzy Sets Syst. 77(3), 265–276 (1996)
Palade, V., Bocaniala, C.D.: Computational Intelligence in Fault Diagnosis, 1st ed. Springer Publishing Company, New York (2003)
Hwang, S.M., Chen,J.R.: Temperature prediction using fuzzy time series. Trans. Syst. Man Cybern. Part B:Cybern. 30(2), 263–275 (2000)
Pedrycs, W., Peters, J.F.: Computational intelligence in software engineering. In: Canadian Conference on Engineering Innovation: Voyage of Discovery, pp. 253–256. St. Johns (1997)
Pedrycs, W.: Computational intelligence as an emerging paradigm of software engineering. In: Proceedings of the 14th International Conference on Software Engineering and Knowledge Engineering (SEKE ‘02), pp. 7–14 (2002)
Wang, L.: Data Mining with Computational Intelligence. Springer, Heidelberg (2009)
Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: NATO Advanced Workshop on Robots and Biological Systems. Tuscany (1989)
Kennedy, J.: The particle swarm: social adaptation of knowledge. In: International Conference on Evolutionary Computation, (1997)
Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or news media? In: WWW, pp. 591–600 (2010)
Naaman, M., Boase, J., Lai, C.H.: Is it really about me?: message content in social awareness streams. In: CSCW, pp. 189–192 (2010)
Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: conversational aspects of retweeting on Twitter. In: HICSS, pp. 1–10 (2010)
Java, A., Song, X., Finin, T., Tseng, B.: Why we Twitter: understanding microblogging usage and communities. In: WebKDD & SNA-KDD, pp. 56–65 (2007)
Bollen, J., Mao, H., Zeng, X.J.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)
Asur, S., Huberman, B.A.: Predicting the future with social media. In: arXiv Preprint (2010)
O’Connor, B., Krieger, M., Ahn, D.: Tweet motif: exploratory search and topic summarization for Twitter. In: ICWSM, pp. 384–385 (2010)
Kaye, J.J., et al.: Nokia internet pulse: a long term deployment and iteration of a Twitter visualization. In: CHI EA, pp. 829–844 (2012)
Ramage, D., Dumais, S., Liebling, D.: Characterizing microblogs with topic models. In: ICWSM, pp. 384–385 (2010)
Acar, A., Muraki, Y.: Twitter for crisis communication: lessons learned from Japan’s tsunami disaster. Int. J. Web Based Communities 7(3), 392–402 (2011)
Li, R., Lei, K.H., Khadiwala, R., Chang, K.C.C.: TEDAS: a Twitter-based event detection system and analysis system. In: ICDE, pp. 1273–1276 (2012)
Shamma, D.A., Kennedy, L., Churchill, E.F.: Tweet the debates: understanding community annotation of uncollected sources. In: WSM, pp. 3–10 (2009)
Brooks, A.L., Churchill, E.F.: Tune in, tweet on, twit out: information snacking on Twitter. In: CHI, pp. 1–4 (2010)
Bernstein, M.S., et al.: Eddi: interactive topic-based browsing of social status streams Eddi: interactive topic-based browsing of social status streams. In: UIST, pp. 303–312 (2010)
Archambault, D., Greene, D., Cunningham, P., Hurley, N.: Theme crowds: multi resolution summaries of Twitter usage. In: SMUC, pp. 77–84 (2011)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Liu, S., et al.: Interactive, topic-based visual text summarization and analysis. In: CIKM, pp. 543–552 (2009)
Hafez, A.I., Ghali, N.I., Hassanien, A.E., Fahmy, A.A.: Genetic algorithms for community detection in social networks. In: International Conference on Intelligent Systems Design and Applications (ISDA), pp. 460–465, Kochi (2012)
Pizzuti, C.: Boosting the detection of modular community structure with genetic algorithms and local search. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC), pp. 226–231 (2012)
Pizzuti, C.: Mesoscopic analysis of networks with genetic algorithms. World Wide Web, pp. 1–21 (2012)
Brown, M.A., Alkadry, M.: Predictors of social networking and individual performance. In: Citizen 2.0: Public and Governmental Interaction through Web 2.0 Technologies. IGI Global, New York, p. 17 (2012) (Ch 8)
Wang, C.G., Szeto, K.Y.: Sales potential optimization on directed social networks: a quasi-parallel genetic algorithm approach. Appl. Evol. Comput. (LNCS) 7248, 114–123 (2012)
Baldwin, B., Carpenter, B.: Ling Pipe. http://alias-i.com/lingpipe/ (2003)
Anderberg, M.R.: Cluster Analysis for Applications. Academic Press Inc., New York (1973)
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall advanced reference series, Upper Saddle River (1988)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)
Pedrycz, W.: Knowledge based clustering in computational intelligence. In: Challenges in Computational Intelligence, pp. 317–341. Springer, Berlin (2007)
Xu, R., Wunsch, D.: Computational intelligence in clustering algorithms, with applications. In: Algorithms for Approximation, pp. 31–50. Springer, Berlin (2007)
Sibson, R.: SLINK: an optimally efficient algorithm for the single-link cluster method. Comput. J. 16(1), 30–34 (1973)
Sorensen, T.: A method of establishing groups of equal amplitude in plant sociology. Vidensk. Selsk. Biol. Skr. 5(4), 1 (1948)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)
Hamerly, G., Elkan, C.: Learning the k in k-means. In: NIPS, pp. 281–288 (2003)
Song, Y., Wang, H., Wang, Z., Li, H., Chen, W.: Short text conceptualization using a probabilistic knowledgebase. In: IJCAI, pp. 2330–2336 (2011)
Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1986)
Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manage. 24(5), 513–523 (1988)
Ogievetsky, M., Heer, V., Bostock, J.; D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)
Shneiderman, B., Wattenberg, M.: Ordered treemap layouts. In: INFOVIS, pp. 73–78 (2001)
Rivadeneira, A.W., Gruen, D.M., Muller, M.J., Millen, D.R.: Getting our head in the clouds. In: CHI, pp. 995–998 (2007)
Carmel, D., Uziel, E., Guy, I., Mass, Y., Roitman, H.: Folksonomy-based term extraction for word cloud generation. In: CIKM, pp. 2437–2440 (2011)
Herring, S.R., Poon, C.M., Balasi, G.A., Bailey, B.P.: Tweet spiration: leveraging social media for design inspiration. In: CHI EA, pp. 2311–2316 (2011)
Lowongtrakool, C., Hiransakolwong, N.: Noise filtering in unsupervised clustering using computation intelligence. Int. J. Math. Anal. 6(59), 2911–2920 (2012)
Laorden, C., Sanz, B., Santos, I., Galan-Garcia, P., Bringas, P.: Collective classification for spam filtering. In: Computational Intelligence in Security for Information Systems, vol. 6694, pp. 1–8. Malaga (2011)
Benevenuto, F., Magno, G., Rodrigues, T., Almeida, V.: Detecting spammers on Twitter. In: Seventh annual Collaboration, Electronic messaging, Anti-Abuse and Spam Conference, pp. 1–9. Redmond (2010)
Mathioudakis, M., Koudas, N.: Twitter monitor: trend detection over the Twitter stream. In: SIGMOD, pp. 1155–1158 (2010)
Singer, P., Wagner, C., Strohmaier, M.: Understanding co-evolution of social and content networks on Twitter. In: WWW, pp. 57–60 (2010)
Cataldi, M., Di Caro, L., Schifanella, C.: Emerging topic detection on Twitter based on temporal and social terms evaluation. In: MDMKDD, vol. 4, pp. 4–10 (2010)
Jo, Y., Hopcroft, J., Lagoze, J.: The web of topics: discovering the topology of topic evolution in a corpus. In: WWW, pp. 257–266 (2011)
Lin, C.X., Mei, Q., Han, J., Jiang, Y., Danilevsky, M.: The joint inference of topic diffusion and evolution in social communities. In: ICDM, pp. 378–387 (2011)
Back, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation, 1st edn. IOP Publishing Ltd, Bristol (1997)
Raidl, G.: Evolutionary computation: an overview and recent trends. ÖGAI J. 24, 2–7 (2005)
Borgs, C., et al.: Dynamics of bid optimization in online advertisement auctions. In: WWW, pp. 531–540 (2007)
Yih, W., Goodman, J., Carvalho, V.R.: Finding advertising keywords on web pages. In: WWW, pp. 213–222 (2006)
Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft. Comput. 9(1), 3–12 (2005)
Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Kas, M., Suh, B. (2014). Computational Framework for Generating Visual Summaries of Topical Clusters in Twitter Streams. In: Pedrycz, W., Chen, SM. (eds) Social Networks: A Framework of Computational Intelligence. Studies in Computational Intelligence, vol 526. Springer, Cham. https://doi.org/10.1007/978-3-319-02993-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-02993-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02992-4
Online ISBN: 978-3-319-02993-1
eBook Packages: EngineeringEngineering (R0)