Skip to main content

Computational Framework for Generating Visual Summaries of Topical Clusters in Twitter Streams

  • Chapter
  • First Online:
Social Networks: A Framework of Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 526))

Abstract

As a huge amount of tweets become available online, it has become an opportunity and a challenge to extract useful information from tweets for various purposes. This chapter proposes a novel way to extract topical structure from a large set of tweets and generate a usable summarization along with related topical keywords. Our system covers the full span of the topical analytics of tweets starting with collecting the tweets, processing and preparing them for text analysis, forming clusters of relevant words, and generating visual summaries of most relevant keywords along with their topical context. We evaluate our system by conducting a user study and the results suggest that users are able to detect relevant information and infer relationships between keywords better with our summarization method than they do with the commonly used word cloud visualizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Engelbrecht, A.: Computational Intelligence: an Introduction. Wiley, Chichester (2007)

    Book  Google Scholar 

  2. Chen, S.M.: Evaluating weapon systems using fuzzy arithmetic operations. Fuzzy Sets Syst. 77(3), 265–276 (1996)

    Article  Google Scholar 

  3. Palade, V., Bocaniala, C.D.: Computational Intelligence in Fault Diagnosis, 1st ed. Springer Publishing Company, New York (2003)

    Google Scholar 

  4. Hwang, S.M., Chen,J.R.: Temperature prediction using fuzzy time series. Trans. Syst. Man Cybern. Part B:Cybern. 30(2), 263–275 (2000)

    Google Scholar 

  5. Pedrycs, W., Peters, J.F.: Computational intelligence in software engineering. In: Canadian Conference on Engineering Innovation: Voyage of Discovery, pp. 253–256. St. Johns (1997)

    Google Scholar 

  6. Pedrycs, W.: Computational intelligence as an emerging paradigm of software engineering. In: Proceedings of the 14th International Conference on Software Engineering and Knowledge Engineering (SEKE ‘02), pp. 7–14 (2002)

    Google Scholar 

  7. Wang, L.: Data Mining with Computational Intelligence. Springer, Heidelberg (2009)

    Google Scholar 

  8. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: NATO Advanced Workshop on Robots and Biological Systems. Tuscany (1989)

    Google Scholar 

  9. Kennedy, J.: The particle swarm: social adaptation of knowledge. In: International Conference on Evolutionary Computation, (1997)

    Google Scholar 

  10. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or news media? In: WWW, pp. 591–600 (2010)

    Google Scholar 

  11. Naaman, M., Boase, J., Lai, C.H.: Is it really about me?: message content in social awareness streams. In: CSCW, pp. 189–192 (2010)

    Google Scholar 

  12. Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: conversational aspects of retweeting on Twitter. In: HICSS, pp. 1–10 (2010)

    Google Scholar 

  13. Java, A., Song, X., Finin, T., Tseng, B.: Why we Twitter: understanding microblogging usage and communities. In: WebKDD & SNA-KDD, pp. 56–65 (2007)

    Google Scholar 

  14. Bollen, J., Mao, H., Zeng, X.J.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)

    Google Scholar 

  15. Asur, S., Huberman, B.A.: Predicting the future with social media. In: arXiv Preprint (2010)

    Google Scholar 

  16. O’Connor, B., Krieger, M., Ahn, D.: Tweet motif: exploratory search and topic summarization for Twitter. In: ICWSM, pp. 384–385 (2010)

    Google Scholar 

  17. Kaye, J.J., et al.: Nokia internet pulse: a long term deployment and iteration of a Twitter visualization. In: CHI EA, pp. 829–844 (2012)

    Google Scholar 

  18. Ramage, D., Dumais, S., Liebling, D.: Characterizing microblogs with topic models. In: ICWSM, pp. 384–385 (2010)

    Google Scholar 

  19. Acar, A., Muraki, Y.: Twitter for crisis communication: lessons learned from Japan’s tsunami disaster. Int. J. Web Based Communities 7(3), 392–402 (2011)

    Article  Google Scholar 

  20. Li, R., Lei, K.H., Khadiwala, R., Chang, K.C.C.: TEDAS: a Twitter-based event detection system and analysis system. In: ICDE, pp. 1273–1276 (2012)

    Google Scholar 

  21. Shamma, D.A., Kennedy, L., Churchill, E.F.: Tweet the debates: understanding community annotation of uncollected sources. In: WSM, pp. 3–10 (2009)

    Google Scholar 

  22. Brooks, A.L., Churchill, E.F.: Tune in, tweet on, twit out: information snacking on Twitter. In: CHI, pp. 1–4 (2010)

    Google Scholar 

  23. Bernstein, M.S., et al.: Eddi: interactive topic-based browsing of social status streams Eddi: interactive topic-based browsing of social status streams. In: UIST, pp. 303–312 (2010)

    Google Scholar 

  24. Archambault, D., Greene, D., Cunningham, P., Hurley, N.: Theme crowds: multi resolution summaries of Twitter usage. In: SMUC, pp. 77–84 (2011)

    Google Scholar 

  25. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  26. Liu, S., et al.: Interactive, topic-based visual text summarization and analysis. In: CIKM, pp. 543–552 (2009)

    Google Scholar 

  27. Hafez, A.I., Ghali, N.I., Hassanien, A.E., Fahmy, A.A.: Genetic algorithms for community detection in social networks. In: International Conference on Intelligent Systems Design and Applications (ISDA), pp. 460–465, Kochi (2012)

    Google Scholar 

  28. Pizzuti, C.: Boosting the detection of modular community structure with genetic algorithms and local search. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC), pp. 226–231 (2012)

    Google Scholar 

  29. Pizzuti, C.: Mesoscopic analysis of networks with genetic algorithms. World Wide Web, pp. 1–21 (2012)

    Google Scholar 

  30. Brown, M.A., Alkadry, M.: Predictors of social networking and individual performance. In: Citizen 2.0: Public and Governmental Interaction through Web 2.0 Technologies. IGI Global, New York, p. 17 (2012) (Ch 8)

    Google Scholar 

  31. Wang, C.G., Szeto, K.Y.: Sales potential optimization on directed social networks: a quasi-parallel genetic algorithm approach. Appl. Evol. Comput. (LNCS) 7248, 114–123 (2012)

    Google Scholar 

  32. Baldwin, B., Carpenter, B.: Ling Pipe. http://alias-i.com/lingpipe/ (2003)

  33. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press Inc., New York (1973)

    MATH  Google Scholar 

  34. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall advanced reference series, Upper Saddle River (1988)

    Google Scholar 

  35. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  36. Pedrycz, W.: Knowledge based clustering in computational intelligence. In: Challenges in Computational Intelligence, pp. 317–341. Springer, Berlin (2007)

    Google Scholar 

  37. Xu, R., Wunsch, D.: Computational intelligence in clustering algorithms, with applications. In: Algorithms for Approximation, pp. 31–50. Springer, Berlin (2007)

    Google Scholar 

  38. Sibson, R.: SLINK: an optimally efficient algorithm for the single-link cluster method. Comput. J. 16(1), 30–34 (1973)

    Article  MathSciNet  Google Scholar 

  39. Sorensen, T.: A method of establishing groups of equal amplitude in plant sociology. Vidensk. Selsk. Biol. Skr. 5(4), 1 (1948)

    Google Scholar 

  40. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hamerly, G., Elkan, C.: Learning the k in k-means. In: NIPS, pp. 281–288 (2003)

    Google Scholar 

  42. Song, Y., Wang, H., Wang, Z., Li, H., Chen, W.: Short text conceptualization using a probabilistic knowledgebase. In: IJCAI, pp. 2330–2336 (2011)

    Google Scholar 

  43. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1986)

    Google Scholar 

  44. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manage. 24(5), 513–523 (1988)

    Article  Google Scholar 

  45. Ogievetsky, M., Heer, V., Bostock, J.; D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)

    Google Scholar 

  46. Shneiderman, B., Wattenberg, M.: Ordered treemap layouts. In: INFOVIS, pp. 73–78 (2001)

    Google Scholar 

  47. Rivadeneira, A.W., Gruen, D.M., Muller, M.J., Millen, D.R.: Getting our head in the clouds. In: CHI, pp. 995–998 (2007)

    Google Scholar 

  48. Carmel, D., Uziel, E., Guy, I., Mass, Y., Roitman, H.: Folksonomy-based term extraction for word cloud generation. In: CIKM, pp. 2437–2440 (2011)

    Google Scholar 

  49. Herring, S.R., Poon, C.M., Balasi, G.A., Bailey, B.P.: Tweet spiration: leveraging social media for design inspiration. In: CHI EA, pp. 2311–2316 (2011)

    Google Scholar 

  50. Lowongtrakool, C., Hiransakolwong, N.: Noise filtering in unsupervised clustering using computation intelligence. Int. J. Math. Anal. 6(59), 2911–2920 (2012)

    MATH  Google Scholar 

  51. Laorden, C., Sanz, B., Santos, I., Galan-Garcia, P., Bringas, P.: Collective classification for spam filtering. In: Computational Intelligence in Security for Information Systems, vol. 6694, pp. 1–8. Malaga (2011)

    Google Scholar 

  52. Benevenuto, F., Magno, G., Rodrigues, T., Almeida, V.: Detecting spammers on Twitter. In: Seventh annual Collaboration, Electronic messaging, Anti-Abuse and Spam Conference, pp. 1–9. Redmond (2010)

    Google Scholar 

  53. Mathioudakis, M., Koudas, N.: Twitter monitor: trend detection over the Twitter stream. In: SIGMOD, pp. 1155–1158 (2010)

    Google Scholar 

  54. Singer, P., Wagner, C., Strohmaier, M.: Understanding co-evolution of social and content networks on Twitter. In: WWW, pp. 57–60 (2010)

    Google Scholar 

  55. Cataldi, M., Di Caro, L., Schifanella, C.: Emerging topic detection on Twitter based on temporal and social terms evaluation. In: MDMKDD, vol. 4, pp. 4–10 (2010)

    Google Scholar 

  56. Jo, Y., Hopcroft, J., Lagoze, J.: The web of topics: discovering the topology of topic evolution in a corpus. In: WWW, pp. 257–266 (2011)

    Google Scholar 

  57. Lin, C.X., Mei, Q., Han, J., Jiang, Y., Danilevsky, M.: The joint inference of topic diffusion and evolution in social communities. In: ICDM, pp. 378–387 (2011)

    Google Scholar 

  58. Back, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation, 1st edn. IOP Publishing Ltd, Bristol (1997)

    Book  Google Scholar 

  59. Raidl, G.: Evolutionary computation: an overview and recent trends. ÖGAI J. 24, 2–7 (2005)

    Google Scholar 

  60. Borgs, C., et al.: Dynamics of bid optimization in online advertisement auctions. In: WWW, pp. 531–540 (2007)

    Google Scholar 

  61. Yih, W., Goodman, J., Carvalho, V.R.: Finding advertising keywords on web pages. In: WWW, pp. 213–222 (2006)

    Google Scholar 

  62. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft. Comput. 9(1), 3–12 (2005)

    Article  Google Scholar 

  63. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miray Kas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kas, M., Suh, B. (2014). Computational Framework for Generating Visual Summaries of Topical Clusters in Twitter Streams. In: Pedrycz, W., Chen, SM. (eds) Social Networks: A Framework of Computational Intelligence. Studies in Computational Intelligence, vol 526. Springer, Cham. https://doi.org/10.1007/978-3-319-02993-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02993-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02992-4

  • Online ISBN: 978-3-319-02993-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics