Social Network Dynamics: An Attention Economics Perspective

  • Sheng Yu
  • Subhash Kak
Part of the Studies in Computational Intelligence book series (SCI, volume 526)


Within social networking services, users construct their personal social networks by creating asymmetric or symmetric social links. They usually follow friends and selected famous entities, such as celebrities and news agencies. On such platforms, attention is used as currency to consume the information. In this chapter, we investigate how users follow famous entities. We analyze the static and dynamical data within a large social networking service with a manually classified set of famous entities. The results show that the in-degree of famous entities does not fit to a power-law distribution. Conversely, the maximum number of famous followees in one category for each user shows a power-law property. Finally, in an attention economics perspective, we discuss the reasons underlying these phenomena. These findings might be helpful in microblogging marketing and user classification.


Social network Social network analysis Network evolution Attention economics 



We appreciate Tencent Inc, the organizers of KDD Cup 2012, for sharing the datasets of microblogging service with the public.


  1. 1.
    Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323, 892–895 (2009)Google Scholar
  2. 2.
    Acock, A.C., Hurlbert, J.S.: Social network analysis: a structural perspective for family studies. J. Soc. Pers. Relat. 7, 245–264 (1990)CrossRefGoogle Scholar
  3. 3.
    Guo, Y., Chen, J.: A case study: social network and knowledge sharing. 2010 international conference on e-business and e-government (IEEE), pp. 1715–1718 (2010)Google Scholar
  4. 4.
    Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of the 18th international conference on World wide web—WWW’09, p. 721. ACM Press, New York (2009)Google Scholar
  5. 5.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  6. 6.
    Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Proceedings of the thirty-second annual ACM symposium on Theory of computing—STOC’00, pp. 163–170. ACM Press, New York (2000)Google Scholar
  7. 7.
  8. 8.
    Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging network. In: Proceeding of the 17th international conference on World Wide Web—WWW’08, p. 915. ACM Press, New York (2008)Google Scholar
  9. 9.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th international conference on World wide web—WWW’10, p. 591. ACM Press, New York (2010)Google Scholar
  10. 10.
    Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter under the microscope (2008)Google Scholar
  11. 11.
    Ebel, H., Mielsch, L.-I., Bornholdt, S.: Scale-free topology of e-mail networks. Phys. Rev. E 66, 035103R (2002)Google Scholar
  12. 12.
    Watts, D.J.: The “new” science of networks. Annu. Rev. Sociol. 30, 243–270 (2004)CrossRefGoogle Scholar
  13. 13.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.: Measuring user influence in Twitter: the million follower fallacy. In: Proceeding of the fourth international AAAI conference on weblogs and social media, pp. 10–17 (2010)Google Scholar
  14. 14.
    Ahn, Y.-Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th international conference on World Wide Web—WWW’07, p. 835. ACM Press, New York (2007)Google Scholar
  15. 15.
    Wilson, M., Nicholas, C.: Topological analysis of an online social network for older adults. In: Proceeding of the 2008 ACM workshop on Search in social media—SSM’08, p. 51. ACM Press, New York (2008)Google Scholar
  16. 16.
    Asur, S., Huberman, B.A.: Predicting the future with social media. 2010 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (IEEE), pp. 492–499 (2010)Google Scholar
  17. 17.
    Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with Twitter: what 140 characters reveal about political sentiment. In: Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, pp. 178–185 (2010)Google Scholar
  18. 18.
    Yu, S., Kak, S.: A survey of prediction using social media,
  19. 19.
    Goldhaber, M.H.: The Attention economy and the net. First Monday 2, 1–27 (1997)Google Scholar
  20. 20.
    Pope, N.: The economics of attention: style and substance in the age of information (review). Technol. Culture 48, 673–675 (2007)CrossRefGoogle Scholar
  21. 21.
    Essig, M., Arnold, U.: Electronic Procurement in Supply Chain Management: An Information Economics-Based Analysis of Electronic Markets. J Supply Chain Manag. 37, 43–49 (2001)CrossRefGoogle Scholar
  22. 22.
    Evans, P.B., Wurster, T.S.: Strategy and the new economics of information. Harvard Bus. Rev. 75, 70–82 (1997)Google Scholar
  23. 23.
    Erik, B., Joo, H.O.: The attention economy: measuring the value of free digital services on the internet (2013)Google Scholar
  24. 24.
    Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM conference on Internet measurement—IMC’07, p. 29. ACM Press, New York (2007)Google Scholar
  25. 25.
    Dutt, A.: Aggregate demand-aggregate supply analysis: a history. Hist. Polit. Econ. 34, 321–363 (2002)CrossRefGoogle Scholar
  26. 26.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on World wide web—WWW’10, p. 851. ACM Press, New York (2010)Google Scholar
  27. 27.
    Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: can we trust what we RT? In: Proceedings of the First Workshop on Social Media Analytics—SOMA’10, pp. 71–79. ACM Press, New York (2010)Google Scholar
  28. 28.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 1–11 (1999)CrossRefGoogle Scholar
  29. 29.
    Hassan, A.S., Rafie, M.A.M.: A survey of Game theory using evolutionary algorithms. 2010 international symposium on information technology (IEEE), pp. 1319–1325 (2010)Google Scholar
  30. 30.
    Congleton, R.D.: The median voter model,
  31. 31.
    Holcombe, R.G.: The median voter model in public choice theory. Public Choice 61, 115–125 (1989)CrossRefGoogle Scholar
  32. 32.
    Enelow, J.M., Hinich, M.J.: A general probabilistic spatial theory of election. Public Choice 61, 101–113 (1989)CrossRefGoogle Scholar
  33. 33.
    Eation, B.C., Lipsey, R.G.: The principle of minimum differentiation reconsidered: some new developments in the theory of spatial competition. Rev. Econ. Stud. 42, 27–49 (1975)CrossRefGoogle Scholar
  34. 34.
    Shaked, A.: Existence and computation of mixed strategy Nash equilibrium for 3-firms location problem. J. Ind. Econ. 31, 93–96 (1982)CrossRefGoogle Scholar
  35. 35.
    Chris, A.: The long tail: why the future of business is selling less of more. J. Prod. Innov. Manag. 24, 274–276 (2007)CrossRefGoogle Scholar
  36. 36.
    Erik, B., Yu, J.H., Michael, D.S.: From niches to riches: Anatomy of the long tail. MIT Sloan Manag. Rev. 47, 67–71 (2006)Google Scholar
  37. 37.
    Goel, S., Broder, A., Gabrilovich, E., Pang, B.: Anatomy of the long tail: ordinary people with extraordinary tastes. In: Proceedings of the third ACM international conference on Web search and data mining—WSDM’10, p. 201. ACM Press, New York (2010)Google Scholar
  38. 38.
    Heider, F.: Attitudes and cognitive organization. J. Psychol. 21, 107–112 (1946)Google Scholar
  39. 39.
    Cartwright, D., Harary, F.: Structural balance: a generalization of Heider’s theory. Psychol. Rev. 63, 277–293 (1956)Google Scholar
  40. 40.
    Quiggin, J.: A theory of anticipated utility. J. Econ. Behav. Organ. 3, 323–343 (1982)CrossRefGoogle Scholar
  41. 41.
    Starmer, C.: Developments in non-expected utility theory: the hunt for a descriptive theory of choice under risk. J. Econ. Lit. 38, 332–382 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceOklahoma State UniversityStillwaterU.S.A

Personalised recommendations