Detecting Community Structures in Networks Using a Linear-Programming Based Approach: a Review

  • William Y. C. Chen
  • Andreas Dress
  • Winking Q. Yu
Part of the Studies in Computational Intelligence book series (SCI, volume 526)


We give an account of an approach to community-structure detection in networks using linear programming: given a finite simple graph G, we assign penalties for manipulating this graph by either deleting or adding edges, and then consider the problem of turning G, by performing these two operations, at minimal total cost into a graph that represents a community structure, i.e., that is a disjoint union of complete subgraphs. We show that this minimization problem can be reformulated (and solved!) in terms of a one-parameter family of linear-programming problems relative to which some kind of a “second-order phase transition” can be observed, and we demonstrate by example that this interpretation provides a viable alternative for dealing with the much studied task of detecting community structures in networks. And by reporting our discussions with a leading ecologist, we demonstrate how our approach can be used to analyse food webs and to support the elucidation of their “global” implications.


Networks Graph Graph manipulation Community structure Zachary’s karate club Food web Modularity GN algorithm Linear programming (LP) Integer linear programming (ILP) One-parameter families of LP-problems Second-order phase transitions for parametrized LP-problems Perturbation (of community data) 



The authors are grateful to R.Ulanowicz and C. Bondavalli for their expert comments on our results and many helpful suggestions, and to M. Briesemann for his help on the data packing.

This work was financially supported by the Max Planck Society of Germany, the 973 Project on Mathematical Mechanization, the Ministry of Education, the Ministry of Science and Technology, and the National Science Foundation of China.


  1. 1.
    Albert, R., Jeong, H., Barabási, A.-L.: Diameter of the World-Wide Web. Nature 401, 130–131 (1999)CrossRefGoogle Scholar
  2. 2.
    Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of samll-world networks. Proc. Natl. Acad. Sci. U.S.A. 97, 11149–11152 (2000)CrossRefGoogle Scholar
  3. 3.
    Bagrow, J.P., Bollt, E.M.: Local method for detecting communities. Phys. Rev. E 72, 046108 (2005)CrossRefGoogle Scholar
  4. 4.
    Baird, D., Ulanowicz, R.E.: The seasonal dynamics of the Chesapeake Bay ecosystem. Ecol. Monogr. 59, 329–364 (1989)CrossRefGoogle Scholar
  5. 5.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, W.Y.C., Dress, A.W.M., Yu,W.Q.: Community structures of networks. In: IET Systems Biology, Proceedings Mathematics Aspects of Computer and Information Sciences (MACIS 2006), Beijing, China, and Mathematics computer science vol. 1, pp. 441–457 (2008)Google Scholar
  7. 7.
    Chen, W.Y.C., Dress, A.W.M., Yu,W.Q.: Checking the reliability of a linear-programming based approach towards detecting community structures in networks, Proceedings International Conference on Computational Systems Biology (ICCSB 2006), Shanghai, China, and IET System Biology, vol. 5, pp. 286–291 (2007)Google Scholar
  8. 8.
    Clauset. A., Newman M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E. 69, 026113 (2004)Google Scholar
  9. 9.
    Clauset. A.: Finding local community structure in networks. Phys. Rev. E. 72, 026132 (2005)Google Scholar
  10. 10.
    Davidson, E., et al.: A genomic regulatory network for development. Science 295, 1669–1678 (2002)CrossRefGoogle Scholar
  11. 11.
    Flake, G.W., Lawrence, S.R., Giles, C.L., Coetzee, F.M.: Self-organization and identification of web communities. IEEE Comput. 35, 66–71 (2002)CrossRefGoogle Scholar
  12. 12.
    Fortunao, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). doi: 10.1016/j.physrep.2009.11.002 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Program. 45, 59–96 (1989)CrossRefMATHGoogle Scholar
  15. 15.
    Grötschel, M., Wakabayashi, Y.: Facets of the clique partitioning polytope. Math. Program. 47, 367–387 (1990)CrossRefMATHGoogle Scholar
  16. 16.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.-L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRefGoogle Scholar
  17. 17.
    Jeong, H., Mason, S.P., Barabási, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)CrossRefGoogle Scholar
  18. 18.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970)CrossRefMATHGoogle Scholar
  19. 19.
    Kleinberg, J., Lawrence, S.: The structure of the Web. Science 294, 1849–1850 (2001)CrossRefGoogle Scholar
  20. 20.
    Newman, M.E.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U.S.A. 98, 404–409 (2001)CrossRefMATHGoogle Scholar
  21. 21.
    Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)CrossRefGoogle Scholar
  22. 22.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)CrossRefGoogle Scholar
  23. 23.
    Pocklington, A., Cumiskey, M., Armstrong, J., Grant, S.: The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol. Syst. Biol. (2006). doi:  10.1038/msb4100041
  24. 24.
    Porter, M.A., Onnela, J.-P., Mucha, P.J.: Communities in networks. Not. Amer. Math. Soc. 56(9), 1082–1097, 1164–1166 (2009)Google Scholar
  25. 25.
    Pothen, A., Simon, H., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and idetifying communities in networks. Proc. Natl. Acad. Sci. U.S.A. 101, 2658–2663 (2004)CrossRefGoogle Scholar
  27. 27.
    Redner, S.: How popular is your paper? an empirical study of the citation distribution. Eur. Phys. J. B 4, 131–134 (1998)CrossRefGoogle Scholar
  28. 28.
    Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex networks with a potts model. Phys. Rev. Lett. 93, 218701 (2004)CrossRefGoogle Scholar
  29. 29.
    Scott, J.: Social Network Analysis: A Handbook., 2nd edn. Sage, London, (2000)Google Scholar
  30. 30.
    Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)CrossRefGoogle Scholar
  31. 31.
    Tyler, J.R., Wilkinson, D.M., Huberman, B.A.: Email as spectroscopy: automated discovery of community structure within organizations. In: Huysman, M., Wenger, E., Wulf. V. (eds.) Proceedings of the first international conference on communities and technologies, Kluwer, Dordrecht (2003)Google Scholar
  32. 32.
    Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, Cambridge (1994)Google Scholar
  33. 33.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  34. 34.
    Watts, D.J.: Small Worlds. Princeton University Press, Princeton (1999)Google Scholar
  35. 35.
    Williams, R.J., Martinez, N.D.: Simple rules yield complex food webs. Nature 404, 180–183 (2000)CrossRefGoogle Scholar
  36. 36.
    Wu, F., Huberman, B.A.: Finding communities in linear time: a physics approach. Eur. Phys. J. B 38, 331–338 (2004)CrossRefGoogle Scholar
  37. 37.
    Zachary, W.W.: An information flow model for conflict and fisson in small groups. J. Anthropol. Res. 33, 452–473 (1977)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • William Y. C. Chen
    • 1
  • Andreas Dress
    • 3
    • 4
  • Winking Q. Yu
    • 2
  1. 1.Center for Applied MathematicsTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Center for CombinatoricsNankai UniversityTianjinPeople’s Republic of China
  3. 3.CAS-MPG Partner Institute and Key Lab for Computational BiologyShanghaiPeople’s Republic of China
  4. 4.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations