Skip to main content

Simulating Protein Folding in Different Environmental Conditions

  • Chapter
  • First Online:
Protein Conformational Dynamics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 805))

  • 2911 Accesses

Abstract

Molecular dynamics simulations have become an invaluable tool in investigating the dynamics of protein folding. However, most computational studies of protein folding assume dilute aqueous simulation conditions in order to reduce the complexity of the system under study and enhance the efficiency. Nowadays, it is evident that environmental conditions encountered in vivo (or even in vitro) play a major role in regulating the dynamics of protein folding especially when one considers the highly condensed environment in the cellular cytoplasm. In order to factor in these conditions, we can utilize the high efficiency of well-designed low resolution (coarse-grained) simulation models to reduce the complexity of these added protein-milieu interactions involving different time and length scales. The goal of this chapter is to describe some recently developed coarse-grained simulation techniques that are specifically designed to go beyond traditional aqueous solvent conditions. The chapter also gives the reader a flavor of the things that we can study using such “smart” low resolution models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahman A (1964) Correlations in the motion of atoms in liquid argon. Phys Rev 136:405–411

    Article  CAS  Google Scholar 

  2. McCammon A, Gelin B, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  CAS  PubMed  Google Scholar 

  3. Buchner GS, Murphy RD, Buchete NV, Kubelka J (2011) Dynamics of protein folding: probing the kinetic network of folding-unfolding transitions with experiment and theory. Biochim Biophys Acta-Proteins Proteomics 1814:1001–1020

    Article  CAS  Google Scholar 

  4. Scheraga HA, Khalili M, Liwo A (2007) Protein-folding dynamics: overview of molecular simulation techniques. Annu Rev Phys Chem 58:57–83

    Article  CAS  PubMed  Google Scholar 

  5. Dror RO, Dirks RM, Grossman JP, Xu HF, Shaw DE (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41, D. C. Rees, Ed., ed Palo Alto: Annual Reviews, pp 429–452

    Google Scholar 

  6. Stagg L, Zhang SQ, Cheung MS, Wittung-Stafshede P (2007) Molecular crowding enhances native structure and stability of alpha/beta protein flavodoxin. Proc Natl Acad Sci USA 104:18976–18981

    Article  CAS  PubMed  Google Scholar 

  7. Homouz D, Perham M, Samiotakis A, Cheung MS, Wittung-Stafshede P (2008) Crowded, cell-like environment induces shape changes in aspherical protein. Proc Natl Acad Sci USA 105:11754–11759

    Article  CAS  PubMed  Google Scholar 

  8. van den Berg B, Wain R, Dobson CM, Ellis RJ (2000) Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell. EMBO J 19:3870–3875

    Article  PubMed  Google Scholar 

  9. Ai X, Zhou Z, Bai Y, Choy W-Y (2006) 15N NMR spin relaxation dispersion study of the molecular crowding effects on protein folding under native conditions. J Am Chem Soc 128:3916–3917

    Article  CAS  PubMed  Google Scholar 

  10. Charlton LM, Barnes CO, Li C, Orans J, Young GB, Pielak GJ (2008) Residue-level interrogation of macromolecular crowding effects on protein stability. J Am Chem Soc 130:6826–6830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sasahara K, McPhie P, Minton AP (2003) Effect of dextran on protein stability and conformation attributed to macromolecular crowding. J Mol Biol 326:1227–1237

    Article  CAS  PubMed  Google Scholar 

  12. Kozer N, Kuttner YY, Haran G, Schreiber G (2007) Protein-protein association in polymer solutions: from dilute to semidilute to concentrated. Biophys J 92:2139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Snoussi K, Halle B (2005) Protein self-association induced by macromolecular crowding: a quantitative analysis by magnetic relaxation dispersion. Biophys J 88:2855–2866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Rivas G, Fernández JA, Minton AP (2001) Direct observation of the enhancement of noncooperative protein self-assembly by macromolecular crowding: indefinite linear self-association of bacterial cell division protein FtsZ. Proc Natl Acad Sci USA 98:3150–3155

    Article  CAS  PubMed  Google Scholar 

  15. Cheung MS, Finke JM, Callahan B, Onuchic JN (2003) Exploring the interplay between topology and secondary structural formation in the protein folding problem. J Phys Chem B 107:11193–11200

    Article  CAS  Google Scholar 

  16. Samiotakis A, Homouz D, Cheung MS (2010) Multiscale investigation of chemical interference in proteins. J Chem Phys 132:175101

    Article  PubMed  Google Scholar 

  17. Anfinsen CB, Haber E, Sela M, White FH (1961) Kinetics of formation of native ribonuclease during oxidation of reduced polypeptide chain. Proc Natl Acad Sci USA 47:1309–1314

    Article  CAS  PubMed  Google Scholar 

  18. Levinthal C (1968) Are there pathways for protein folding? J Chim Phys Phys-Chim Biol 65:44

    Google Scholar 

  19. Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Onuchic JN, Luthey-Schulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 48:545–600

    Article  CAS  PubMed  Google Scholar 

  21. Leopold PE, Onuchic JN, Montal M (1992) Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci USA 89:8271–8275

    Article  Google Scholar 

  22. Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4:10–19

    Article  CAS  PubMed  Google Scholar 

  23. Bryngelson JD, Wolynes PG (1987) Spin-glasses and statistical mechanics of protein folding. Proc Natl Acad Sci USA 84:7524–7528

    Article  CAS  PubMed  Google Scholar 

  24. Go N (1983) Theoretical studies of protein folding. Annu Rev Biophys Bioeng 12:183–210

    Article  CAS  PubMed  Google Scholar 

  25. Baker D (2000) A surprising simplicity to protein folding. Nature 405:39–42

    Article  CAS  PubMed  Google Scholar 

  26. Socci ND, Onuchic JN (1994) Folding kinetics of protein like heteropolymers. J Chem Phys 101:1519–1528

    Article  CAS  Google Scholar 

  27. Taketomi H, Ueda Y, Gō N (1975) Studies on protein folding, unfolding and fluctuations by computer simulations. Int J Pept Protein Res 7:445–459

    Article  CAS  PubMed  Google Scholar 

  28. Dill KA (1985) Theory for the folding and stability of globular proteins. Biochemistry 24:1501–1509

    Article  CAS  PubMed  Google Scholar 

  29. Ueda Y, Taketomi H, Gō N (1978) Studies on protein folding, unfolding, and fluctuations by computer simulation. II. A. Three‐dimensional lattice model of lysozyme. Biopolymers 17:1531–1548

    Article  CAS  Google Scholar 

  30. Clementi C, Nymeyer H, Onuchic JN (2000) Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 298:937–953

    Article  CAS  PubMed  Google Scholar 

  31. Thirumalai D, Guo Z (1995) Nucleation mechanism for protein folding and theoretical predictions for hydrogen-exchange labeling experiments. Biopolymers 35:137–140

    Article  CAS  Google Scholar 

  32. Wolynes PG, Onuchic JN, Thirumalai D (1995) Navigating the folding routes. Science 267:1619–1620

    Article  CAS  PubMed  Google Scholar 

  33. Shea J-E, Onuchic JN, Brooks CL III (1999) Exploring the origins of topological frustration: design of a minimally frustrated model of fragment B of protein A. Proc Natl Acad Sci USA 96:12512–12517

    Article  CAS  PubMed  Google Scholar 

  34. Betancourt MR, Thirumalai D (1999) Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci 8:361–369

    Article  CAS  PubMed  Google Scholar 

  35. Miyazawa M, Jernigan RL (1985) Estimation of interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18:534–552

    Article  CAS  Google Scholar 

  36. Cheung MS, Klimov D, Thirumalai D (2005) Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc Natl Acad Sci USA 102:4753–4758

    Article  CAS  PubMed  Google Scholar 

  37. Cheung MS, Thirumalai D (2006) Nanopore-protein interactions dramatically alter stability and yield of the native state in restricted spaces. J Mol Biol 357:632–643

    Article  CAS  PubMed  Google Scholar 

  38. Cheung MS, Chavez L, Onuchic JN (2004) The energy landscape for protein folding and possible connections to functions. Polymer 45:547–555

    Article  CAS  Google Scholar 

  39. Hyeon C, Thirumalai D (2011) Capturing the essence of folding and functions of biomolecules using coarse-grained models. Nat Commun 2:487

    Article  PubMed  Google Scholar 

  40. Veitshans T, Klimov D, Thirumalai D (1997) Protein folding kinetics: timescales, pathways, and energy landscapes in terms of sequence-dependent properties. Fold Des 2:1–22

    Article  CAS  PubMed  Google Scholar 

  41. Kolinski A, Skolnick J (1992) Discretized model of proteins. I. Monte Carlo study of cooperativity in homopolypeptides. J Chem Phys 97:9412–9426

    Article  CAS  Google Scholar 

  42. Sippl MJ (1990) Calculation of conformational ensembles from potentials of mean force an approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol 213:859–883

    Article  CAS  PubMed  Google Scholar 

  43. Sope AK (1996) Empirical potential Monte Carlo simulation of fluid structure. Chem Phys 202:295–306

    Article  Google Scholar 

  44. Reith D, Putz M, Muller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24:1624–1636

    Article  CAS  PubMed  Google Scholar 

  45. Betancourt MR, Omovie SJ (2009) Pairwise energies for polypeptide coarse-grained models derived from atomic models. J Chem Phys 130:195103

    Article  PubMed  Google Scholar 

  46. Makowski M, Liwo A, Makowska MKJ, Scheraga HA (2007) Simple physics-based analytical formulas for the potentials of mean force for the interaction of amino acid side chains in water. 2. Tests with simple spherical systems. J Phys Chem B 111:2917–2924

    Article  CAS  PubMed  Google Scholar 

  47. Debye P, Hückel E (1923) The theory of electrolytes. I. Lowering of freezing point and related phenomena. Physikalische Zeitschrift 24:185–206

    CAS  Google Scholar 

  48. Gront D, Kmiecik S, Kolinski A (2007) Backbone building from quadrilaterals: a fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates. J Comput Chem 28:1593–1597

    Article  CAS  PubMed  Google Scholar 

  49. Canutescu A, Shelenkov A, Dunbrack R (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12:2001–2014

    Article  CAS  PubMed  Google Scholar 

  50. Rotkiewicz P, Skolnick J (2008) Fast procedure for reconstruction of full-atom protein models from reduced representations. J Comput Chem 29:1460–1465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Heath AP, Kavraki LE, Clementi C (2007) From coarse-grain to all-atom: toward multiscale analysis of protein landscapes. Proteins Struct Funct Bioinform 68:646–661

    Article  CAS  Google Scholar 

  52. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego, CA

    Google Scholar 

  53. van den Berg B, Ellis RJ, Dobson CM (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J 18:6927–6933

    Article  PubMed  Google Scholar 

  54. Rivas G, Ferrone F, Herzfeld J (2004) Life in a crowded world. EMBO Rep 5:23–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Record MT, Courtenay ES, Cayley S, Guttman HJ (1998) Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments. Trends Biochem Sci 23:190–194

    Article  CAS  PubMed  Google Scholar 

  56. Ellis RJ, Minton AP (2003) Cell biology – join the crowd. Nature 425:27–28

    Article  CAS  PubMed  Google Scholar 

  57. Minton AP (2005) Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited. Biophys J 88:971–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Zhou HX, Dill KA (2001) Stabilization of proteins in confined spaces. Biochemistry 40:11289–11293

    Article  CAS  PubMed  Google Scholar 

  59. Perham M, Stagg L, Wittung-Stafshede P (2007) Macromolecular crowding increases structural content of folded proteins. FEBS Lett 581:5065–5069

    Article  CAS  PubMed  Google Scholar 

  60. Eicken C, Sharma V, Klabunde T, Lawrenz MB, Hardham JM, Norris SJ et al (2002) Crystal structure of Lyme disease variable surface antigen VlsE of Borrelia burgdorferi. J Biol Chem 277:21691–21696

    Article  CAS  PubMed  Google Scholar 

  61. Sanbonmatsu KY, Garcia AE (2002) Structure of Met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics. Proteins 46:225–234

    Article  CAS  PubMed  Google Scholar 

  62. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  63. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules I. The method. J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  64. Chodera JD, Swope WC, Pitera JW, Seok C, Dill KA (2007) Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations. J Chem Theory Comput 3:26–41

    Article  CAS  Google Scholar 

  65. Homouz D, Stagg L, Wittung-Stafshede P, Cheung MS (2009) Macromolecular crowding modulates folding mechanism of alpha/beta protein apoflavodoxin. Biophys J 96:671–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Mok KH, Kuhn LT, Goez M, Day I, Lin J, Andersen NH et al (2007) A pre-existing hydrophobic collapse in the unfolded state of an ultrafast folding protein. Nature 447:106–109

    Article  CAS  PubMed  Google Scholar 

  67. Means AR, Dedman JR (1980) Calmodulin – an intracellular calcium receptor. Nature 285:73–77

    Article  CAS  PubMed  Google Scholar 

  68. Homouz D, Sanabria H, Waxham MN, Cheung MS (2009) Modulation of calmodulin plasticity by the effect of macromolecular crowding. J Mol Biol 391:933–943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Wang Q, Liang K-C, Czader A, Waxham MN, Cheung MS (2011) The effect of macromolecular crowding, ionic strength and calcium binding on calmodulin dynamics. PLoS Comput Biol 7:e1002114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Dhar A, Samiotakis A, Ebbinghaus S, Nienhaus L, Homouz D, Gruebele M et al (2010) Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding. Proc Natl Acad Sci USA 107:17586–17591

    Article  CAS  PubMed  Google Scholar 

  71. Samiotakis A, Cheung MS (2011) Folding dynamics of Trp-cage in the presence of chemical interference and macromolecular crowding. I. J Chem Phys 135:175101-175101-16

    Google Scholar 

  72. Wang Q, Cheung M (2012) A physics-based approach of coarse-graining the cytoplasm of E. coli Biophys J 102:2353–2361

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirar Homouz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Homouz, D. (2014). Simulating Protein Folding in Different Environmental Conditions. In: Han, Kl., Zhang, X., Yang, Mj. (eds) Protein Conformational Dynamics. Advances in Experimental Medicine and Biology, vol 805. Springer, Cham. https://doi.org/10.1007/978-3-319-02970-2_8

Download citation

Publish with us

Policies and ethics