Skip to main content

Understanding Protein Dynamics Using Conformational Ensembles

  • Chapter
  • First Online:
Protein Conformational Dynamics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 805))

Abstract

Conformational ensembles are powerful tools to represent the range of conformations that can be sampled by proteins. They can be generated by using purely theoretical methods or, as is most often the case, by fitting ensembles of conformations to experimental data that report on the amplitude of protein dynamics. Conformational ensembles have been useful instruments to study fundamental properties of proteins such as the mechanism of molecular recognition, the early stages of protein folding and the mechanism by which structural information propagates through the structures of globular proteins structures via correlated backbone motions. In this chapter I will review the various approaches that have been put forward in the literature to generate conformation ensembles for proteins and present a selection of examples of how such representations of the structural heterogeneity of proteins have been used to explore the fundamental properties of these macromolecules. Finally, I will look ahead at likely future developments in this area, which is important for structural and chemical biology as well as for biophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci USA 102:6679–6685

    Article  CAS  PubMed  Google Scholar 

  2. Vendruscolo M (2007) Determination of conformationally heterogeneous states of proteins. Curr Opin Struct Biol 17:15–20

    Article  CAS  PubMed  Google Scholar 

  3. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  CAS  PubMed  Google Scholar 

  4. Fenwick RB, Esteban-Martín S, Salvatella X (2011) Understanding biomolecular motion, recognition, and allostery by use of conformational ensembles. Eur Biophys J 40:1339–1355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346

    Article  CAS  PubMed  Google Scholar 

  6. Shan Y, Kim ET, Eastwood MP, Dror RO, Seeliger MA et al (2011) How does a drug molecule find its target binding site? J Am Chem Soc 133:9181–9183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci USA 108:10184–10189

    Article  CAS  PubMed  Google Scholar 

  8. Buch I, Harvey MJ, Giorgino T, Anderson DP, De Fabritiis G (2010) High-throughput all-atom molecular dynamics simulations using distributed computing. J Chem Inf Model 50:397–403

    Article  CAS  PubMed  Google Scholar 

  9. Shaw DE, Chao JC, Eastwood MP, Gagliardo J, Grossman JP et al (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM 51:91

    Article  Google Scholar 

  10. Harvey MJ, Giupponi G, Fabritiis GD (2009) ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput 5:1632–1639

    Article  CAS  Google Scholar 

  11. Maragakis P, Lindorff-Larsen K, Eastwood MP, Dror RO, Klepeis JL et al (2008) Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. J Phys Chem B 112:6155–6158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A et al (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  CAS  PubMed  Google Scholar 

  14. van Gunsteren WF, Dolenc J, Mark A (2008) Molecular simulation as an aid to experimentalists. Curr Opin Struct Biol 18:149–153

    Article  PubMed  Google Scholar 

  15. Showalter SA, Brüschweiler R (2007) Quantitative molecular ensemble interpretation of NMR dipolar couplings without restraints. J Am Chem Soc 129:4158–4159

    Article  CAS  PubMed  Google Scholar 

  16. Li D-W, Meng D, Brüschweiler R (2009) Short-range coherence of internal protein dynamics revealed by high-precision in silico study. J Am Chem Soc 131:14610–14611

    Article  CAS  PubMed  Google Scholar 

  17. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    Article  CAS  PubMed  Google Scholar 

  18. Fuxreiter M, Tompa P, Simon I, Uversky VN, Hansen JC et al (2008) Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol 4:728–737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Garcia-Pino A, Balasubramanian S, Wyns L, Gazit E, De Greve H et al (2010) Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142:101–111

    Article  CAS  PubMed  Google Scholar 

  20. Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584

    Article  CAS  PubMed  Google Scholar 

  21. Lindorff-Larsen K, Trbovic N, Maragakis P, Piana S, Shaw DE (2012) Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J Am Chem Soc 134:3787–3791

    Article  CAS  PubMed  Google Scholar 

  22. Jensen MR, Ruigrok RW, Blackledge M (2013) Describing intrinsically disordered proteins at atomic resolution by NMR. Curr Opin Struct Biol 23:426–435

    Article  CAS  PubMed  Google Scholar 

  23. Jha AK, Colubri A, Freed KF, Sosnick TR (2005) Statistical coil model of the unfolded state: resolving the reconciliation problem. Proc Natl Acad Sci USA 102:13099–13104

    Article  CAS  PubMed  Google Scholar 

  24. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  25. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199

    Article  Google Scholar 

  26. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919

    Article  CAS  PubMed  Google Scholar 

  27. Huber T, Torda AE, van Gunsteren WF (1994) Local elevation: a method for improving the searching properties of molecular dynamics simulation. J Comput Aided Mol Des 8:695–708

    Article  CAS  PubMed  Google Scholar 

  28. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562–12566

    Article  CAS  PubMed  Google Scholar 

  29. Berne BJ, Straub JE (1997) Novel methods of sampling phase space in the simulation of biological systems. Curr Opin Struct Biol 7:181–189

    Article  CAS  PubMed  Google Scholar 

  30. Zuckerman DM (2011) Equilibrium sampling in biomolecular simulations. Annu Rev Biophys 40:41–62

    Article  CAS  PubMed  Google Scholar 

  31. Markwick PRL, Bouvignies G, Salmon L, McCammon JA, Nilges M et al (2009) Toward a unified representation of protein structural dynamics in solution. J Am Chem Soc 131:16968–16975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Sisamakis E, Valeri A, Kalinin S, Rothwell PJ, Seidel CAM (2010) Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol 475:455–514

    CAS  PubMed  Google Scholar 

  33. Svergun D, Barberato C, Malfois M, Volkov V, Konarev P et al (1995) Evaluation of the solution scattering from macromolecules with known atomic structure and fitting to experimental data. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  34. Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104:3607–3622

    Article  CAS  PubMed  Google Scholar 

  35. Fenwick RB, Esteban-Martín S, Salvatella X (2010) Influence of experimental uncertainties on the properties of ensembles derived from NMR residual dipolar couplings. J Phys Chem Lett 1:3438–3441

    Article  CAS  Google Scholar 

  36. Robustelli P, Cavalli A, Dobson CM, Vendruscolo M, Salvatella X (2009) Folding of small proteins by Monte Carlo simulations with chemical shift restraints without the use of molecular fragment replacement or structural homology. J Phys Chem B 113:7890–7896

    Article  CAS  PubMed  Google Scholar 

  37. Case DA (2013) Chemical shifts in biomolecules. Curr Opin Struct Biol 23:172–176

    Article  CAS  PubMed  Google Scholar 

  38. Choy WY, Forman-Kay JD (2001) Calculation of ensembles of structures representing the unfolded state of an SH3 domain. J Mol Biol 308:1011–1032

    Article  CAS  PubMed  Google Scholar 

  39. Bernadó P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129:5656–5664

    Article  PubMed  Google Scholar 

  40. Ball KA, Phillips AH, Wemmer DE, Head-Gordon T (2013) Differences in β-strand populations of monomeric Aβ40 and Aβ42. Biophys J 104:2714–2724

    Article  CAS  PubMed  Google Scholar 

  41. Nodet G, Salmon L, Ozenne V, Meier S, Jensen MR et al (2009) Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from NMR residual dipolar couplings. J Am Chem Soc 131:17908–17918

    Article  CAS  PubMed  Google Scholar 

  42. Smith LJ, Bolin KA, Schwalbe H, MacArthur MW, Thornton JM et al (1996) Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol 255:494–506

    Article  CAS  PubMed  Google Scholar 

  43. Bernadó P, Blanchard L, Timmins P, Marion D, Ruigrok RWH et al (2005) A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proc Natl Acad Sci USA 102:17002–17007

    Article  PubMed  Google Scholar 

  44. Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol 338:1015–1026

    Article  CAS  PubMed  Google Scholar 

  45. Song J, Guo L-W, Muradov H, Artemyev NO, Ruoho AE et al (2008) Intrinsically disordered gamma-subunit of cGMP phosphodiesterase encodes functionally relevant transient secondary and tertiary structure. Proc Natl Acad Sci USA 105:1505–1510

    Article  CAS  PubMed  Google Scholar 

  46. Baker JMR, Hudson RP, Kanelis V, Choy W-Y, Thibodeau PH et al (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 14:738–745

    Article  CAS  PubMed  Google Scholar 

  47. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025

    Article  CAS  PubMed  Google Scholar 

  48. Marsh JA, Neale C, Jack FE, Choy W-Y, Lee AY et al (2007) Improved structural characterizations of the drkN SH3 domain unfolded state suggest a compact ensemble with native-like and non-native structure. J Mol Biol 367:1494–1510

    Article  CAS  PubMed  Google Scholar 

  49. Marsh JA, Forman-Kay JD (2009) Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints. J Mol Biol 391:359–374

    Article  CAS  PubMed  Google Scholar 

  50. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  51. Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid beta-protein assembly and Alzheimer disease. J Biol Chem 284:4749–4753

    Article  CAS  PubMed  Google Scholar 

  52. Esteban-Martín S, Bryn Fenwick R, Salvatella X (2012) Synergistic use of NMR and MD simulations to study the structural heterogeneity of proteins. WIREs Comput Mol Sci 2:466–478

    Article  Google Scholar 

  53. Kaptein R, Zuiderweg ER, Scheek RM, Boelens R, van Gunsteren WF (1985) A protein structure from nuclear magnetic resonance data. lac repressor headpiece. J Mol Biol 182:179–182

    Article  CAS  PubMed  Google Scholar 

  54. Wüthrich K (2003) NMR studies of structure and function of biological macromolecules (Nobel Lecture). J Biomol NMR 27:13–39

    Article  PubMed  Google Scholar 

  55. Bonvin AMJJ, Brünger AT (1995) Conformational variability of solution nuclear magnetic resonance structures. J Mol Biol 250:80–93

    Article  CAS  PubMed  Google Scholar 

  56. Mierke DF, Kurz M, Kessler H (1994) Peptide flexibility and calculations of an ensemble of molecules. J Am Chem Soc 116:1042–1049

    Article  CAS  Google Scholar 

  57. Bürgi R, Pitera J, van Gunsteren WF (2001) Assessing the effect of conformational averaging on the measured values of observables. J Biomol NMR 19:305–320

    Article  PubMed  Google Scholar 

  58. Vögeli B, Segawa TF, Leitz D, Sobol A, Choutko A et al (2009) Exact distances and internal dynamics of perdeuterated ubiquitin from NOE buildups. J Am Chem Soc 131:17215–17225

    Article  PubMed  Google Scholar 

  59. Vögeli B, Kazemi S, Güntert P, Riek R (2012) Spatial elucidation of motion in proteins by ensemble-based structure calculation using exact NOEs. Nat Struct Mol Biol 19:1-53-1057

    Google Scholar 

  60. Lange OF, Lakomek N-A, Farès C, Schröder GF, Walter KFA et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475

    Article  CAS  PubMed  Google Scholar 

  61. Fenwick RB, Esteban-Martín S, Richter B, Lee D, Walter KFA et al (2011) Weak long-range correlated motions in a surface patch of ubiquitin involved in molecular recognition. J Am Chem Soc 133:10336–10339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  CAS  PubMed  Google Scholar 

  63. Salvatella X, Richter B, Vendruscolo M (2008) Influence of the fluctuations of the alignment tensor on the analysis of the structure and dynamics of proteins using residual dipolar couplings. J Biomol NMR 40:71–81

    Article  CAS  PubMed  Google Scholar 

  64. Clore GM, Schwieters CD (2004) How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation? J Am Chem Soc 126:2923–2938

    Article  CAS  PubMed  Google Scholar 

  65. Clore GM, Schwieters CD (2004) Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements. Biochemistry 43:10678–10691

    Article  CAS  PubMed  Google Scholar 

  66. Best RB, Vendruscolo M (2004) Determination of protein structures consistent with NMR order parameters. J Am Chem Soc 126:8090–8091

    Article  CAS  PubMed  Google Scholar 

  67. Lindorff-Larsen K, Best RB, Depristo MA, Dobson CM, Vendruscolo M (2005) Simultaneous determination of protein structure and dynamics. Nature 433:128–132

    Article  CAS  PubMed  Google Scholar 

  68. Richter B, Gsponer J, Várnai P, Salvatella X, Vendruscolo M (2007) The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native state ensembles of proteins. J Biomol NMR 37:117–135

    Article  CAS  PubMed  Google Scholar 

  69. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein …. J Am Chem Soc 122:3791–3792

    Article  CAS  Google Scholar 

  70. Huang J-R, Grzesiek S (2010) Ensemble calculations of unstructured proteins constrained by RDC and PRE data: a case study of urea-denatured ubiquitin. J Am Chem Soc 132:694–705

    Article  CAS  PubMed  Google Scholar 

  71. Esteban-Martín S, Fenwick RB, Salvatella X (2010) Refinement of ensembles describing unstructured proteins using NMR residual dipolar couplings. J Am Chem Soc 132:4626–4632

    Article  PubMed  Google Scholar 

  72. Zweckstetter M, Hummer G, Bax A (2004) Prediction of charge-induced molecular alignment of biomolecules dissolved in dilute liquid-crystalline phases. Biophys J 86:3444–3460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. De Simone A, Montalvao RW, Vendruscolo M (2011) Determination of conformational equilibria in proteins using residual dipolar couplings. J Chem Theory Comput 7:4189–4195

    Article  PubMed Central  PubMed  Google Scholar 

  74. Montalvao RW, De Simone A, Vendruscolo M (2012) Determination of structural fluctuations of proteins from structure-based calculations of residual dipolar couplings. J Biomol NMR 53:281–292

    Article  CAS  PubMed  Google Scholar 

  75. Torda AE, Scheek RM, van Gunsteren WF (1989) Time-dependent distance restraints in molecular dynamics simulations. Chem Phys Lett 157:289–294

    Article  CAS  Google Scholar 

  76. Torda AE, Scheek RM, van Gunsteren WF (1990) Time-averaged nuclear Overhauser effect distance restraints applied to tendamistat. J Mol Biol 214:223–235

    Article  CAS  PubMed  Google Scholar 

  77. Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109:4108–4139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM (2005) Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127:476–477

    Article  CAS  PubMed  Google Scholar 

  79. Silvestre-Ryan J, Bertoncini CW, Fenwick RB, Esteban-Martín S, Salvatella X (2013) Average conformations determined from PRE data provide high-resolution maps of transient tertiary interactions in disordered proteins. Biophys J 104:1740–1751

    Article  CAS  PubMed  Google Scholar 

  80. Camilloni C, Robustelli P, De Simone A, Cavalli A, Vendruscolo M (2012) Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts. J Am Chem Soc 134:3968–3971

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Salvatella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salvatella, X. (2014). Understanding Protein Dynamics Using Conformational Ensembles. In: Han, Kl., Zhang, X., Yang, Mj. (eds) Protein Conformational Dynamics. Advances in Experimental Medicine and Biology, vol 805. Springer, Cham. https://doi.org/10.1007/978-3-319-02970-2_3

Download citation

Publish with us

Policies and ethics