Abstract
Automated visual inspection is an important step to assure the quality of printed circuit boards (PCB). Component placement errors such as missing, misaligned or incorrectly rotated component are major causes of defects on surface mount PCB. This paper proposes a novel automated visual inspection method for PCB. The proposed method uses a sequence of image processing techniques inspired by the theory of inventive problem solving (TRIZ) with Affine-SIFT image matching techniques to enhance the component placement inspection. Only analytic discussions are presented in this paper to support the potential of the proposed method.
Keywords
- automated visual inspection
- printed circuit board
- image matching
- affine-sift
- theory of inventive problem solving
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Chuang, S.-F., Chang, W.-T., Lin, C.-C., Tarng, Y.-S.: Misalignment inspection of multilayer PCBs with an automated X-ray machine vision system. The International Journal of Advanced Manufacturing Technology 51, 995–1008 (2010)
Perng, D.-B., Liu, H.-W., Chang, C.-C.: Automated SMD LED inspection using machine vision. The International Journal of Advanced Manufacturing Technology 57, 1065–1077 (2011)
Zeng, Z., Ma, L.Z., Zheng, Z.Y.: Automated extraction of PCB components based on specularity using layered illumination. Journal of Intelligent Manufacturing 22, 919–932 (2011)
Wu, C.-H., Wang, D.-Z., Ip, A., Wang, D.-W., Chan, C.-Y., Wang, H.-F.: A particle swarm optimization approach for components placement inspection on printed circuit boards. Journal of Intelligent Manufacturing 20, 535–549 (2009)
Chu, C., Wang, C., Jiang, B.: An Automatic Image Enhancement Framework for Industrial Products Inspection. In: Proceedings of the Institute of Industrial Engineers Asian Conference, pp. 73–78. Springer (2013)
Mogharrebi, M., Prabuwono, A.S., Sahran, S., Aghamohammadi, A.: Missing Component Detection on PCB Using Neural Networks. In: Zheng, D. (ed.) Advances in Electrical Engineering & Electrical Machines. LNEE, vol. 134, pp. 387–394. Springer, Heidelberg (2012)
Mar, N.S.S., Yarlagadda, P., Fookes, C.: Design and development of automatic visual inspection system for PCB manufacturing. Robotics and Computer-Integrated Manufacturing 27, 949–962 (2011)
Ang, M.C., Pham, D.T., Soroka, A.J., Ng, K.W.: PCB assembly optimisation using the Bees Algorithm enhanced with TRIZ operators. In: IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, pp. 2708–2713 (2010)
Altshuller, G.: The innovation algorithm: TRIZ, systematic innovation and technical creativity. Technical Innovation Ctr, Worcester (1999)
Ahmad, S.A., Pham, D.T., Ng, K.W., Ang, M.C.: TRIZ-inspired Asymmetrical Search Neighborhood in the Bees Algorithm. In: 2012 Sixth Asia Modelling Symposium (AMS). IEEE (2012)
Yu, G., Morel, J.-M.: A fully affine invariant image comparison method. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009. IEEE (2009)
Newcombe, R.A., Davison, A.J.: Live dense reconstruction with a single moving camera. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2010)
Ta, D.-N., Chen, W.-C., Gelfand, N., Pulli, K.: SURFTrac: Efficient tracking and continuous object recognition using local feature descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009. IEEE (2009)
Doubek, P., Matas, J., Perdoch, M., Chum, O.: Image matching and retrieval by repetitive patterns. In: 2010 20th International Conference on Pattern Recognition (ICPR). IEEE (2010)
Morel, J., Yu, G.: Is SIFT scale invariant? Inverse Problems and Imaging 5, 115–136 (2011)
Morel, J.-M., Yu, G.: ASIFT: A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences 2, 438–469 (2009)
Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE (1999)
Oji, R.: An Automatic Algorithm for Object Recognition and Detection Based on ASIFT Keypoints, arXiv preprint arXiv:1211.5829 (2012)
Yu, G., Morel, J.-M.: ASIFT: An Algorithm for Fully Affine Invariant Comparison. Image Processing On Line (2011)
Su, Y.-Y., Srihari, K.: Placement sequence identification using artificial neural networks in surface mount PCB assembly. The International Journal of Advanced Manufacturing Technology 11, 285–299 (1996)
Dong, N., Wu, C.-H., Ip, W.-H., Chen, Z.-Q., Yung, K.-L.: Chaotic species based particle swarm optimization algorithms and its application in PCB components detection. Expert Systems with Applications (2012)
Wu, H., Kuang, Y., Ouyang, G., Xie, H., Zhang, X.: Optimize Position and Path Planning of Automated Optical Inspection. Journal of Computational Information Systems 8, 2957–2963 (2012)
Dong, Z.-J., Ye, F., Li, D., Huang, J.-X.: PCB matching based on SURF. Circuit World 38, 153–162 (2012)
Crispin, A., Rankov, V.: Automated inspection of PCB components using a genetic algorithm template-matching approach. The International Journal of Advanced Manufacturing Technology 35, 293–300 (2007)
Cho, H.-J., Park, T.-H.: Wavelet transform based image template matching for automatic component inspection. The International Journal of Advanced Manufacturing Technology 50, 1033–1039 (2010)
Wu, C., Dong, N., Ip, W., Chen, Z., Yung, K.: Applying Chaotic Particle Swarm Optimization to the Template Matching Problem. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.) ISICA 2009. LNCS, vol. 5821, pp. 411–421. Springer, Heidelberg (2009)
Xie, F., Uitdenbogerd, A., Song, A.: Detecting PCB component placement defects by genetic programming. In: Congress on Evolutionary Computation (CEC), pp. 1138–1145. IEEE (2013)
Jean, M.M., Guoshen, Y.: SIFT and ASIFT — online demo: try if your images match! (2011), http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html , http://demo.ipol.im/demo/my_affine_sift/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Aghamohammadi, A., Ang, M.C., Prabuwono, A.S., Mogharrebi, M., Ng, K.W. (2013). Enhancing an Automated Inspection System on Printed Circuit Boards Using Affine-SIFT and TRIZ Techniques. In: Zaman, H.B., Robinson, P., Olivier, P., Shih, T.K., Velastin, S. (eds) Advances in Visual Informatics. IVIC 2013. Lecture Notes in Computer Science, vol 8237. Springer, Cham. https://doi.org/10.1007/978-3-319-02958-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-02958-0_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02957-3
Online ISBN: 978-3-319-02958-0
eBook Packages: Computer ScienceComputer Science (R0)