Skip to main content

Vertex operator superalgebras and odd trace functions

  • Chapter
Advances in Lie Superalgebras

Part of the book series: Springer INdAM Series ((SINDAMS,volume 7))

Abstract

We begin by reviewing Zhu’s theorem on modular invariance of trace functions associated to a vertex operator algebra, as well as a generalisation by the author to vertex operator superalgebras. This generalisation involves objects that we call ‘odd trace functions’. We examine the case of the N = 1 superconformal algebra. In particular we compute an odd trace function in two different ways, and thereby obtain a new representation theoretic interpretation of a well known classical identity due to Jacobi concerning the Dedekind eta function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 The precise definition of the action involves choices of roots of unity in general. See [15] for details.

References

  1. Bakas, I., Depireux, D.: A fractional KdV hierarchy, Modern Phys. Lett. A 6(17), 1561–1573 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barakat, A., De Sole, A., Kac, V.: Poisson vertex algebras in the theory of Hamiltonian equations, Jpn. J. Math. 4(2), 141–252 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Belavin, A., Polyakov, A., Zamolodchikov, A.: Infinite conformal symmetry in two dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burruoughs, N., de Groot, M., Hollowood, T., Miramontes, L.: Generalized Drinfeld-Sokolov hierarchies II: the Hamiltonian structures. Comm. Math. Phys. 153, 187–215 (1993)

    Article  MathSciNet  Google Scholar 

  5. de Groot, M., Hollowood, T., Miramontes, L.: Generalized Drinfeld-Sokolov hierarchies. Comm. Math. Phys. 145, 57–84 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Delduc, F., Fehér, L.: Regular conjugacy classes in the Weyl group and integrable hierarchies. J. Phys. A 28(20), 5843–5882 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. De Sole, A., Kac, V., Valeri, D.: Classical W -algebras and generalized Drinfeld-Sokolov bi-Hamiltonian systems within the theory of Poisson vertex algebras. Comm. Math. Phys. 323(2), 663–711 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Sole, A., Kac, V., Valeri, D.: Classical W -algebras and generalized Drinfeld-Sokolov hierarchies for minimal and short nilpotents. arXiv:1306.1684 [math-ph]

    Google Scholar 

  9. De Sole, A., Kac, V., Valeri, D.: Dirac reduction for Poisson vertex algebras. arXiv:1306.6589 [math-ph]

    Google Scholar 

  10. Dickey, L.A.: Lectures on classical W -algebras. Acta Appl. Math. 47, 243–321 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Drinfeld, V., Sokolov, V.: Lie algebras and equations of KdV type. Soviet J. Math. 30, 1975–2036 (1985)

    Article  Google Scholar 

  12. Fateev, V., Lukyanov, S.: The models of two dimensional conformal quantum field theory with ℤn symmetry. Int. J. Mod. Phys. A 3, 507–520 (1988)

    Article  MathSciNet  Google Scholar 

  13. Fehér, L., Harnad, J., Marshall, I.: Generalized Drinfeld-Sokolov reductions and KdV type hierarchies. Comm. Math. Phys. 154(1), 181–214 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fernández-Pousa, C., Gallas, M., Miramontes, L., Sánchez Guillén, J.: W -algebras from soli-ton equations and Heisenberg subalgebras. Ann. Physics 243(2), 372–419 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gelfand, I., Dickey, L.: Family of Hamiltonian structures connected with integrable non-linear equations. Preprint, IPM, Moscow (in Russian) (1978). English version in: Collected papers of I.M. Gelfand, Vol. 1, pp. 625–646. Springer-Verlag, Berlin New York (1987)

    Google Scholar 

  16. Kac, V.: Vertex algebras for beginners. University Lecture Series, AMS, Vol. 10 (1996); 2nd ed. AMS (1998)

    Google Scholar 

  17. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19(5), 1156–1162 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Valeri, D.: Classical W -algebras. Ph.D. thesis (2012)

    Google Scholar 

  19. Zamolodchikov, A.: Infinite additional symmetries in two dimensional conformal quantum field theory. Theor. Math. Phys. 65, 1205–1213 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jethro van Ekeren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Ekeren, J. (2014). Vertex operator superalgebras and odd trace functions. In: Gorelik, M., Papi, P. (eds) Advances in Lie Superalgebras. Springer INdAM Series, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-02952-8_13

Download citation

Publish with us

Policies and ethics