Advertisement

A Fuzzy C Mean Clustering Algorithm for Automated Segmentation of Brain MRI

  • Geenu Paul
  • Tinu Varghese
  • K. V. Purushothaman
  • N. Albert Singh
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 247)

Abstract

An automated scheme for MRI segmentation using fuzzy C means algorithm is proposed. Here a fuzzy C means algorithm is implemented in order to classify the brain voxel. The brain voxel are classified into three main tissue types: gray matter (GM), white matter (WM) and cerebro-spinal fluid (CSF). On studying the segmented image, the reduction in the GM in the brain image indicates the presence of degenerative disease. Segmentation procedure was done with real time data, ie in human .Automated segmented volumes were analyzed by the physician, by manually segmenting it.

Keywords

Magnetic Resonance Imaging Partial Volume Effect Grey Matter White Matter Cerebro-Spinal Fluid Automated Scheme Segmentation FCM algorithm Magnetic resonance (MR) imaging Fuzzy C Means(FCM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Leemput, K., Maes, F., Vandeurmeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imag. 18(10), 897–908 (1999)CrossRefGoogle Scholar
  2. 2.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the expectation maximization algorithm. IEEE Trans. Med. Imag. 20(1), 45–57 (2001)CrossRefGoogle Scholar
  3. 3.
    Greenspan, H., Ruf, A., Goldberger, J.: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans. Med. Imag. 25(9), 1233–1245 (2006)CrossRefGoogle Scholar
  4. 4.
    Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean-shift and data-driven scale selection. In: IEEE Int. Conf. Comput. Vis. (ICCV), vol. 1, pp. 438–445 (2001)Google Scholar
  5. 5.
    Jimenez-Alaniz, J.R., Medina-Banuelos, V., Yanez-Suarez, O.: Data-driven brain MRI segmentation supported on edge confidence and a priori tissue information. IEEE Trans. Med. Imag. 25(1), 74–83 (2006)CrossRefGoogle Scholar
  6. 6.
    Jimenez-Alaniz, J., Pohl-Alfaro, M., Medina-Banuelos, V., Yanez-Suarez, O.: Segmenting brain MRI using adaptive mean shift. In: IEEE EMBS, pp. 3114–3117 (2006)Google Scholar
  7. 7.
    Comaniciu, D.: An algorithm for data-driven bandwidth selection. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 281–288 (2003)CrossRefGoogle Scholar
  8. 8.
    Shanthi, K.J., Sasi Kumar, M., Kesavadas, C.: Neural Network Model for Automatic Segmentation of Brain MRI. IEEE (2008)Google Scholar
  9. 9.
    Desikan, R.S., Howard, J.C.: Automated MRI measures identify individuals with MCI and AD. Brain 132, 2048–2057 (2009)CrossRefGoogle Scholar
  10. 10.
    Greenspan, H., Ruf, A., Goldberger, J.: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans. Med. Imag. 5(9), 1233–1245 (2006)CrossRefGoogle Scholar
  11. 11.
    Jiménez-Alaniz, J.R., Medina-Bañuelos, V., Yáñez-Suárez, O.: Datadriven brain i segmentation supported on edge confidence and a priori tissue information. IEEE Trans. Med. Imag. 25, 74–83 (2006)CrossRefGoogle Scholar
  12. 12.
    Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control 37, 332–341 (1992)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Comaniciu, D.: An algorithm for data-driven bandwidth selection. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 281–288 (2003)CrossRefGoogle Scholar
  14. 14.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis, 1st edn. Chapman & Hall/CRC, London (1998)Google Scholar
  15. 15.
    Meer, P., Georgescu, B.: Edge detection with embedded confidence. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1351–1365 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Geenu Paul
    • 1
  • Tinu Varghese
    • 2
  • K. V. Purushothaman
    • 3
  • N. Albert Singh
    • 2
  1. 1.Department of ECESt Thomas Institute for Science and TechnologyThiruvananthapuramIndia
  2. 2.Noorul Islam UniversityThuckalayTamilnadu
  3. 3.Department of ECEHeera College of Engineering and TechnologyThiruvananthapuramIndia

Personalised recommendations