Detection of Progression of Lesions in MRI Using Change Detection

  • Ankita Mitra
  • Arunava De
  • Anup Kumar Bhattacharjee
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 247)

Abstract

Change detection is a process of identifying the changes in a state of an object over time. We use the phenomena of change detection to detect the changes occurring in MRI of brain having cancerous and non cancerous lesions. A Hybrid Particle Swarm Optimization algorithm that incorporates a Wavelet theory based mutation operation is used for segmentation of lesions in Magnetic Resonance Images. The segmented lesions are the Region of Interest. This method of using change detection algorithm would be helpful in detecting changes in Region of Interests of MRI with lesions and also to view the progress of treatment for cancerous lesions.

Keywords

Region of Interest Particle Swarm Optimization Magnetic Resonance Imaging Entropy Multi-resolution Wavelet Analysis Hybrid Particle Swarm Optimization Wavelet Mutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rao, S.S.: Engineering optimization:Theory and practice, 4th edn., pp. 709–711. John Wiley and Sons (2009)Google Scholar
  2. 2.
    De, A., Das, R.L., Bhattacharjee, A.K., Sharma, D.: Masking based segmentation of diseased MRI images. In: Proceedings of the IEEE International Conference on Information Science and Applications, ICISA 2010, Seoul chapter, Seoul, Korea, pp. 230–236 (2010)Google Scholar
  3. 3.
    Kabir, Y., Dojat, M., Scherrer, B., Forbes, F., Garbay, C.: Multimodal MRI Segmentation of Ischemic Stroke lesions. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS, Cite Internationale, Lyon France (2007)Google Scholar
  4. 4.
    De, A., Bhattacharjee, A.K., Chanda, C.K., Maji, B.: MRI Segmentation using Entropy Maximization and HybridParticle Swarm Optimization with Wavelet Mutation. In: Proceedings of World Congress on Information and Communication Technologies (WICT 2011), Mumbai, pp. 362–367 (2011)Google Scholar
  5. 5.
    De, A., Bhattacharjee, A.K., Chanda, C.K., Maji, B.: Hybrid Particle Swarm Optimization with Wavelet Mutation based Segmentation and Progressive Transmission Technique for MRI Images. International Journal of Innovative Computing, Information and Control 8(7(B)), 5179–5197 (2012)Google Scholar
  6. 6.
    Saha, P.K., Udupa, J.K.: Optimum image thresholding via class uncertainty and region homogeneity. IEEE Trans. Pattern Anal. Mach. Intell. 23(7), 689–706 (2001)CrossRefGoogle Scholar
  7. 7.
    Otsu, N.: A thresholding selection method from gray- level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kittler, J., Illingworth, J.: On threshold selection using clustering criteria. IEEE Trans. Syst. Man Cybern. 15(5), 652–655 (1985)CrossRefGoogle Scholar
  9. 9.
    Hu, Q., Hou, Z., Nowinski, W.L.: Supervised range- constrained thresholding. IEEE Trans. Image Process 15(1), 228–240 (2006)CrossRefGoogle Scholar
  10. 10.
    Qiao, Y., Hu, Q., Qian, G., Luo, S., Nowinski, W.L.: Thresholding based on variance and intensity contrast. Pattern Recognition 40, 596–608 (2007)CrossRefMATHGoogle Scholar
  11. 11.
    Singh, A.: Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10, 989–1003 (1989)CrossRefGoogle Scholar
  12. 12.
    Lunetta, R.S., Elvidge, C.D.: Remote Sensing change Detection: Environmental Monitoring Methods and Applications. Ann Arbor Press, Chelsea (1998)Google Scholar
  13. 13.
    Ling, S.H., Iu, H.H.C., Leung, F.H.F., Chan, K.Y.: Improved Hybrid Particle Swarm Optimized Wavelet Neural Network for Modeling the Development of Fluid Dispensing for Electronic Packaging. IEEE Transactions on Industrial Electronics 55(9), 3447–3460 (2008)CrossRefGoogle Scholar
  14. 14.
    Duabechies, I.: Ten lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992)CrossRefGoogle Scholar
  15. 15.
    Ahmed, A.A.E., Germano, L.T., Antonio, Z.C.: A hybrid particle swarm optimization applied to loss power minimization. IEEE Transactions on Power Systems 20(2), 859–866 (2005)CrossRefGoogle Scholar
  16. 16.
    Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image Change Detection Algorithms: A Systematic Survey. IEEE Trans. Image. Process 14, 294–307 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ankita Mitra
    • 1
  • Arunava De
    • 2
  • Anup Kumar Bhattacharjee
    • 3
  1. 1.Department of Electronics and CommunicationDr. B.C. Roy Engineering CollegeDurgapurIndia
  2. 2.Department of Information TechnologyDr. B.C. Roy Engineering CollegeDurgapurIndia
  3. 3.Department of Electronics and CommunicationNational Institute of TechnologyDurgapurIndia

Personalised recommendations