Advertisement

A Novel Weighted Diffusion Filtering Approach for Speckle Suppression in Ultrasound Images

  • Vikrant Bhateja
  • Gopal Singh
  • Atul Srivastava
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 247)

Abstract

Ultrasound images mainly suffer from speckle noise which makes it difficult to differentiate between small details and noise. Conventional anisotropic diffusion approaches tend to provide edge sensitive diffusion for speckle suppression. This paper proposes a novel approach for removal of speckle along with due smoothening of irregularities present in the ultrasound images by modifying the diffusion coefficient in anisotropic diffusion approach. The present work proposes a diffusion coefficient which is a function of difference of instantaneous coefficient (of variation) and the coefficient of variation for homogeneous region. The finally reconstructed image is obtained by weighted addition of the response of proposed anisotropic diffusion filter and the Laplacian filtered image. Simulation results show that performance of the proposed approach is significantly improved in comparison to recently developed anisotropic diffusion filters for speckle suppression.

Keywords

Anisotropic diffusion Speckle suppression Laplacian Instantaneous coefficient of variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kremkau, F.W.: Diagnostic ultrasound: principles and instruments. Saunders, New York (2003)Google Scholar
  2. 2.
    Gobbi, D.G., Comeau, R.M., Peters, T.M.: Ultrasound probe tracking for real-time ultrasound/MRI overlay and visualization of brain shift. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 920–927. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Lee, J.S.: Digital enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(2), 165–168 (1980)CrossRefGoogle Scholar
  4. 4.
    Kuan, D.T., Sawchuck, A.A., Strand, T.C., et al.: Adaptive noise smoothing filter for images with signal dependent noise. IEEE Transactions on Pattern Analysis and Machine Intelligence 7(2), 165–177 (1985)CrossRefGoogle Scholar
  5. 5.
    Fabbrini, L., Greco, M., Messina, M., Pinelli, G.: Improved anisotropic diffusion filtering for SAR image despeckling. Electronics Letters 49(10), 672–674 (2013)CrossRefGoogle Scholar
  6. 6.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  7. 7.
    Aja-Fernández, S., Alberola-López, C.: On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Transactions on Image Processing 15(9), 2694–2701 (2006)CrossRefGoogle Scholar
  8. 8.
    Yu, Y., Acton, S.: Speckle reduction anisotropic diffusion. IEEE Transactions on Image Processing 11(11), 1260–1270 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Krissian, K., Westin, C.F., Kikinis, R., Vosburgh, K.: Oriented speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing 16(5), 1412–1424 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chen, Q., Montesinos, P., Sun, Q.S.: Ramp preserving Perona-Malik model. Signal Processing 90, 1963–1975 (2010)CrossRefMATHGoogle Scholar
  11. 11.
    You, Y., Kaveh, M.: Fourth order partial differential equations for noise removal. IEEE Transactions on Image Processing 9(10), 1723–1730 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Liu, G., Zeng, X., Tian, F., Li, Z., Chaibou, K.: Speckle reduction by adaptive window anisotropic diffusion. Signal Processing 89, 2233–2243 (2009)CrossRefMATHGoogle Scholar
  13. 13.
    Gupta, A., Tripathi, A., Bhateja, V.: Despeckling of SAR Images via an Improved Anisotropic Diffusion Algorithm. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of Int. Conf. on Front. of Intell. Comput. AISC, vol. 199, pp. 747–754. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Gupta, A., Tripathi, A., Bhateja, V.: De-Speckling of SAR Images in Contourlet Domain Using a New Adaptive Thresholding. In: Proc. of (IEEE) 3rd International Advance Computing Conference (IACC), Ghaziabad (U.P.), India, pp. 1257–1261 (2013)Google Scholar
  15. 15.
    Bhateja, V., Tripathi, A., Gupta, A.: An Improved Local Statistics Filter for Denoising of SAR Images. In: Thampi, S.M., Abraham, A., Pal, S.K., Rodriguez, J.M.C. (eds.) Recent Advances in Intelligent Informatics. AISC, vol. 235, pp. 23–29. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Jain, A., Singh, S., Bhateja, V.: A Robust Approach for Denoising and Enhancement of Mammographic Breast Masses. International Journal on Convergence Computing 1(1), 38–49 (2013)CrossRefGoogle Scholar
  17. 17.
    Jain, A., Bhateja, V.: A Novel Image Denoising Algorithm for Suppressing Mixture of Speckle and Impulse Noise in Spatial Domain. In: Proc. of (IEEE) 3rd International Conference on Electronics and Computer Technology (ICECT), Kanyakumari, India, vol. 3, pp. 207–211 (2013)Google Scholar
  18. 18.
    Singh, S., Jain, A., Bhateja, V.: A Comparative Evaluation of Various Despeckling Algorithms for Medical Images. In: Proc. of (ACMICPS) CUBE International Information Technology Conference & Exhibition, Pune, India, pp. 32–37 (2012)Google Scholar
  19. 19.
    Yu, Y., Acton, S.: Edge detection in ultrasound imagery using the instantaneous coefficient of variation. IEEE Transactions on Image Processing 13(12), 1640–1655 (2004)CrossRefGoogle Scholar
  20. 20.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  21. 21.
    Alain, H., Djemel, Z.: Image quality metrics: PSNR vs. SSIM. In: International Conference on Pattern Recognition, pp. 2366–2369 (2010)Google Scholar
  22. 22.
    Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A HVS based Perceptual Quality Estimation Measure for Color Images. ACEEE International Journal on Signal & Image Processing (IJSIP) 3(1), 63–68 (2012)Google Scholar
  23. 23.
    Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A Novel Full-Reference Image Quality Index for Color Images. In: Satapathy, S.C., Avadhani, P.S., Abraham, A. (eds.) Proceedings of the InConINDIA 2012. AISC, vol. 132, pp. 245–253. Springer, Heidelberg (2012)Google Scholar
  24. 24.
    Gupta, P., Tripathi, N., Bhateja, V.: Multiple Distortion Pooling Image Quality Assessment. International Journal on Convergence Computing 1(1), 60–72 (2013)CrossRefGoogle Scholar
  25. 25.
    Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A Modified PSNR Metric based on HVS for Quality Assessment of Color Images. In: Proc. of IEEE International Conference on Communication and Industrial Application (ICCIA), Kolkata (W.B.), India, pp. 96–99 (2011)Google Scholar
  26. 26.
    Jain, A., Bhateja, V.: A Full-Reference Image Quality Metric for Objective Evaluation in Spatial Domain. In: Proc. of IEEE International Conference on Communication and Industrial Application (ICCIA), Kolkata (W. B.), India, pp. 91–95 (2011)Google Scholar
  27. 27.
    Bhateja, V., Srivastava, A., Kalsi, A.: Fast SSIM Index for Color Images Employing Reduced-Reference Evaluation. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013. AISC, vol. 247, pp. 447–454. Springer, Heidelberg (2014)Google Scholar
  28. 28.
  29. 29.
    Bhateja, V., Urooj, S., Pandey, A., Misra, M., Lay-Ekuakille, A.: A Polynomial Filtering Model for Enhancement of Mammogram Lesions. In: Proc. of IEEE International Symposium on Medical Measurements and Applications (MeMeA 2013), Gatineau (Quebec), Canada, pp. 97–100 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Dept. of Electronics & Communication Engg.SRMGPCLucknowIndia

Personalised recommendations