Advertisement

Fast SSIM Index for Color Images Employing Reduced-Reference Evaluation

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 247)

Abstract

Image quality assessment employing reduced-reference estimation approaches evaluate the perceived quality with only partially extracted features of the reference image. The primary aim of these approaches is to make objective evaluation flexible enough; accommodating the effect of any new distortion introduced in the image. Based on this concept, the paper proposes a fast approach for quality assessment of color images by modifying the SSIM index. The methodology involves sub-band decomposition of color images in wavelet domain for extracting statistical features. The computational complexity during estimation of features is reduced in this work by using the gradient magnitude approach. Noteworthy reduction in computational time is observed with the proposed index and the evaluation is also found coherent with full-reference and reduced-reference SSIM.

Keywords

computational time CSIQ database Discrete Wavelet Transform (DWT) Human Visual System (HVS) structural distortion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lukac, R.: Adaptive Color Image Filtering based on Center-Weighted Vector Directional Filters. Springer Transaction on Multidimensional Systems and Signal Processing 15(2), 169–196 (2004)CrossRefMATHGoogle Scholar
  2. 2.
    Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A HVS based Perceptual Quality Estimation Measure for Color Images. ACEEE International Journal on Signal & Image Processing (IJSIP) 3(1), 63–68 (2012)Google Scholar
  3. 3.
    Gupta, P., Srivastava, P., Bhardwaj, S., Bhateja, V.: A Novel Full Reference Image Quality Index for Color Images. In: Satapathy, S.C., Avadhani, P.S., Abraham, A. (eds.) Proceedings of the InConINDIA 2012. AISC, vol. 132, pp. 245–253. Springer, Heidelberg (2012)Google Scholar
  4. 4.
    Gupta, P., Tripathi, N., Bhateja, V.: Multiple Distortion Pooling Image Quality Assessment. International Journal on Convergence Computing 1(1), 60–72 (2013)CrossRefGoogle Scholar
  5. 5.
    Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A Modified PSNR Metric based on HVS for Quality Assessment of Color Images. In: Proc. of IEEE International Conference on Communication and Industrial Application (ICCIA), Kolkata (W.B.), India, pp. 96–99 (2011)Google Scholar
  6. 6.
    Wang, Z., Bovik, A.C.: Mean Squared Error: Love It or Leave It? IEEE Signal Processing Magazine, 98–117 (2009)Google Scholar
  7. 7.
    Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Transactions on Image Processing 15(11), 3440–3451 (2006)CrossRefGoogle Scholar
  8. 8.
    Jain, A., Bhateja, V.: A Full-Reference Image Quality Metric for Objective Evaluation in Spatial Domain. In: Proc. of IEEE International Conference on Communication and Industrial Application (ICCIA), Kolkata (W. B.), India, pp. 91–95 (2011)Google Scholar
  9. 9.
    Wang, Z., Lu, L., Bovik, A.C.: Video Quality Assessment based on Structural Distortion Measurement. Signal Processing Image Communication 19(2), 121–132 (2004)CrossRefGoogle Scholar
  10. 10.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  11. 11.
    Wang, Z., Bovik, A.C.: A Universal Image Quality Index. IEEE Signal Processing Letters 9(3), 81–84 (2002)CrossRefGoogle Scholar
  12. 12.
    Sheikh, H.R., Bovik, A.C., Cormack, L.: No-Reference Quality Assessment using Natural Scene Statistics: JPEG2000. IEEE Transactions on Image Processing 14(11) (1918-1927)Google Scholar
  13. 13.
    Ferzli, R., Karam, L.J.: A No-Reference Objective Image Sharpness Metric based on the Notion of Just Noticeable Blur (JNB). IEEE Transaction Image Processing 18(4), 445–448 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jaiswal, A., Trivedi, M., Bhateja, V.: A No-Reference Contrast Measurement Index based on Foreground and Background. In: Proc. of IEEE Second Students Conference on Engineering and Systems (SCES), Allahabad, India, pp. 460–464 (2013)Google Scholar
  15. 15.
    Trivedi, M., Jaiswal, A., Bhateja, V.: A No-Reference Image Quality Index for Contrast and Sharpness Measurement. In: Proc. of IEEE Third International Advance Computing Conference (IACC), Ghaziabad (U.P.), India, pp. 1234–1239 (2013)Google Scholar
  16. 16.
    Trivedi, M., Jaiswal, A., Bhateja, V.: A Novel HVS Based Image Contrast Measurement Index. In: Mohan, S., Suresh Kumar, S. (eds.) ICSIP 2012. LNEE, vol. 222, pp. 545–555. Springer, Heidelberg (2012)Google Scholar
  17. 17.
    Wang, Z., Bovik, A.C.: Reduced and No-Reference Image Quality Assessment: The Natural Scene Statistic Model Approach. IEEE Signal Processing Magazine 28(6), 29–40 (2011)CrossRefGoogle Scholar
  18. 18.
    Sheikh, H.R., Bovik, A.C.: Image Information and Visual Quality. IEEE Transactions on Image Processing 15(2), 430–444 (2006)CrossRefGoogle Scholar
  19. 19.
    Rehman, A., Wang, Z.: Reduced-Reference Image Quality Assessment by Structural Similarity Estimation. IEEE Transactions on Image Processing 21(8), 3378–3389 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tao, D., Li, X., Lu, W., Gao, X.: Reduced-Reference IQA in Contourlet Domain. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(6), 1623–1627 (2009)CrossRefGoogle Scholar
  21. 21.
    Ma, L., Li, S., Zhang, F., Ngan, K.N.: Reduced-reference Image Quality Assessment using Reorganized DCT-based Image Representation. IEEE Transactions on Multimedia 13(4), 824–829 (2011)CrossRefGoogle Scholar
  22. 22.
    Zhen, L., Yong, S., Jingjing, Z., Xiangming, W., Tao, S.: Video Quality Assessment based on Fast Structural Similarity Index Algorithm. In: Proc. of IEEE Fourth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 336–339 (2012)Google Scholar
  23. 23.
    Larson, E.C., Chandler, D.M.: Categorical Image Quality (CSIQ) Database (2010), http://vision.okstate.edu/csiq
  24. 24.
    Singh, S., Jain, A., Bhateja, V.: A Comparative Evaluation of Various Despeckling Algorithms for Medical Images. In: Proc. of (ACM ICPS) CUBE International Information Technology Conference & Exhibition, Pune, India, pp. 32–37 (2012)Google Scholar
  25. 25.
    Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A New Model for Performance Evaluation of Denoising Algorithms based on Image Quality Assessment. In: Proc. of (ACM ICPS) CUBE International Information Technology Conference & Exhibition, Pune, India, pp. 5–10 (2012)Google Scholar
  26. 26.
    Jain, A., Bhateja, V.: A Novel Detection and Removal Scheme for Denoising Images Corrupted with Gaussian Outliers. In: Proc. of IEEE Students Conference on Engineering and Systems (SCES 2012), Allahabad (U.P.), India, pp. 434–438 (2012)Google Scholar
  27. 27.
    Jain, A., Bhateja, V.: A Versatile Denoising Method for Images Contaminated with Gaussian Noise. In: Proc. of (ACM ICPS) CUBE International Information Technology Conference & Exhibition, Pune, India, pp. 65–68 (2012)Google Scholar
  28. 28.
    Gupta, A., Tripathi, A., Bhateja, V.: Despeckling of SAR Images via an Improved Anisotropic Diffusion Algorithm. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of Int. Conf. on Front. of Intell. Comput. AISC, vol. 199, pp. 747–754. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. 29.
    Gupta, A., Tripathi, A., Bhateja, V.: Despeckling of SAR Images in Contourlet Domain using a New Adaptive Thresholding. In: Proc. of (IEEE) 3rd International Advance Computing Conference (IACC 2013), Ghaziabad (U.P.), India, pp. 1257–1261 (2013)Google Scholar
  30. 30.
    Bhateja, V., Tripathi, A., Gupta, A.: An Improved Local Statistics Filter for Denoising of SAR Images. In: Thampi, S.M., Abraham, A., Pal, S.K., Rodriguez, J.M.C. (eds.) Recent Advances in Intelligent Informatics. AISC, vol. 235, pp. 23–29. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  31. 31.
    Bhateja, V., Singh, G., Srivastava, A.: A Novel Weighted Diffusion Filtering Approach for Speckle Suppression in Ultrasound Images. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013. AISC, vol. 247, pp. 455–462. Springer, Heidelberg (2014)Google Scholar
  32. 32.
    Jain, A., Singh, S., Bhateja, V.: A Robust Approach for Denoising and Enhancement of Mammographic Breast Masses. International Journal on Convergence Computing 1(1), 38–49 (2013)CrossRefGoogle Scholar
  33. 33.
    Jain, A., Bhateja, V.: A Novel Image Denoising Algorithm for Suppressing Mixture of Speckle and Impulse Noise in Spatial Domain. In: Proc. of (IEEE) 3rd International Conference on Electronics & Computer Technology (ICECT 2011), Kanyakumari (India), vol. 3, pp. 207–211 (2011)Google Scholar
  34. 34.
    Gupta, A., Ganguly, A., Bhateja, V.: An Edge Detection Approach for Images Contaminated with Gaussian and Impulse Noises. In: Mohan, S., Suresh Kumar, S. (eds.) ICSIP 2012. LNEE, vol. 222, pp. 523–533. Springer, Heidelberg (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vikrant Bhateja
    • 1
  • Aastha Srivastava
    • 1
  • Aseem Kalsi
    • 1
  1. 1.Department of Electronics and Communication EngineeringShri Ramswaroop Memorial Group of Professional Colleges (SRMGPC)LucknowIndia

Personalised recommendations