Symbolic Data Analysis for the Development of Object Oriented Data Model for Sensor Data Repository

  • Doreswamy
  • Srinivas Narasegouda
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 247)


Data generated by sensors, need to be stored in a repository which is of large in size. However, data stored in sensor data repository consists of inconsistent, inaccurate, redundant and noisy data. Deployment of data mining algorithm on such sensor datasets declines the performance of the mining algorithm. Therefore, data preprocessing techniques are proposed to eliminate inconsistent, inaccurate, redundant, noisy data from the datasets and symbolic data analysis approach is proposed to reduce the size of the data repository by creating a symbolic data table. The data stored in a more comprehensible manner through symbolic data table is modeled as object oriented data model for mining knowledge from the sensor data sets.


symbolic data analysis data mining object oriented data model sensor data repository 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Intel Berkeley Research lab dataset,
  3. 3.
    Arndt, H., Bandholtz, T., Gunther, O., Ruther, M., Schutz, T.: Eml-the environmental markup language. In: Proceedings of the Workshop Symposium on Integration in Environmental Information Systems (ISESS 2000) (2000)Google Scholar
  4. 4.
    Bauer, A., Emter, T., Vagts, H., Beyerer, J.: Object oriented world model for surveillance systems. In: Future Security: 4th Security Research Conference, pp. 339–345. Fraunhofer Verlag (2009)Google Scholar
  5. 5.
    Billard, L., Diday, E.: Symbolic data analysis: conceptual statistics and data mining, vol. 654. Wiley (2012)Google Scholar
  6. 6.
    Borges, K., Davis, C., Laender, A.: Omt-g: An object-oriented data model for geographic applications. GeoInformatica 5(3), 221–260 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Chang, K., Yau, N., Hansen, M., Estrin, D.: centralized repository to slog sensor network data (2006)Google Scholar
  8. 8.
    Diday, E.: Symbolic data analysis of complex data: Several directions of researchGoogle Scholar
  9. 9.
    Fischer, Y., Bauer, A.: Object-oriented sensor data fusion for wide maritime surveillance. In: 2010 International Waterside Security Conference (WSS), pp. 1–6. IEEE (2010)Google Scholar
  10. 10.
    Frank, U.: An object-oriented methodology for analyzing, designing, and prototyping office procedures. In: Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences, vol. 4, pp. 663–672. IEEE (1994)Google Scholar
  11. 11.
    Obasanjo, D.: An exploration of object oriented database management systems,
  12. 12.
    Shneier, M., Chang, T., Hong, T., Cheok, G., Scott, H., Legowik, S., Lytle, A.: Repository of sensor data for autonomous driving research. In: Proceedings of SPIE, vol. 5083, pp. 390–395. Citeseer (2003)Google Scholar
  13. 13.
    Trujillo, J., Palomar, M., Gomez, J., Song, I.: Designing data warehouses with oo conceptual models. Computer 34(12), 66–75 (2001)CrossRefGoogle Scholar
  14. 14.
    Worboys, M., Hearnshaw, H., Maguire, D.: Object-oriented data modelling for spatial databases. Classics from IJGIS: Twenty Years of the International Journal of Geographical Information Science and Systems 4(4), 119 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of P.G Studies and Research in Computer ScienceMangalore UniversityMangaloreIndia

Personalised recommendations