Path Planning Strategy for Mobile Robot Navigation Using MANFIS Controller

  • Prases Kumar Mohanty
  • Dayal R. Parhi
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 247)


Nowadays intelligent techniques such as fuzzy inference system (FIS), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are mainly considered as effective and suitable methods for modeling an engineering system. The hallmark of this paper presents a new intelligent hybrid technique (Multiple Adaptive Neuro-Fuzzy Inference System) based on the combination of fuzzy inference system and artificial neural network for solving path planning problem of autonomous mobile robot. First we develop an adaptive fuzzy controller with four input parameters, two output parameters and five parameters each. Afterwards each adaptive fuzzy controller acts as a single takagi-sugeno type fuzzy inference system, where inputs are front obstacle distance (FOD), left obstacle distance (LOD), right obstacle distance (ROD) (from robot), Heading angle (HA) (angle to target) and output corresponds to the wheel velocities ( Left wheel and right wheel) of the mobile robot. The effectiveness, feasibility and robustness of the proposed navigational controller have been tested by means of simulation results. It has been observed that the proposed path planning strategy is capable of avoiding obstacles and effectively guiding the mobile robot moving from the start point to the desired target point with shortest path length.


ANFIS obstacle avoidance mobile robot path planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, New York (1990)Google Scholar
  2. 2.
    Canny, J.E.: The Complexity of Robot Motion Planning. MIT Press, MA (1988)Google Scholar
  3. 3.
    Lozano-Perez, T.: A simple motion planning algorithm for general robot manipulators. IEEE Journal of Robotics and Automation 3, 224–238 (1987)CrossRefGoogle Scholar
  4. 4.
    Leven, D., Sharir, M.: Planning a purely translational motion for a convex object in two dimensional space using generalized voronoi diagrams. Discrete & Computational Geometry 2, 9–31 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Payton, D., Rosenblatt, J., Keirsey, D.: Grid-based mapping for autonomous mobile robot. Robotics and Autonomous Systems 11, 13–21 (1993)CrossRefGoogle Scholar
  6. 6.
    Regli, L.: Robot Path Planning. Lectures Notes of Department of computer Science. Drexel University (2007)Google Scholar
  7. 7.
    Khatib, O.: Real time Obstacle Avoidance for manipulators and Mobile Robots. In: IEEE Conference on Robotics and Automation, vol. 2, pp. 505–505 (1985)Google Scholar
  8. 8.
    Jang, J.S.R.: ANFIS: Adaptive network-based fuzzy inference system. IEEE Transaction on System, Man and Cybernetics –Part b 23, 665–685 (1993)CrossRefGoogle Scholar
  9. 9.
    Huq, R., Mann, G.K.I., Gosine, R.G.: Mobile robot navigation using motor schema and fuzzy content behavior modulation. Application of Soft Computing 8, 422–436 (2008)CrossRefGoogle Scholar
  10. 10.
    Selekwa, M.F., Dunlap, D.D., Shi, D., CollinsJr, E.G.: Robot navigation in very cluttered environment by preference based fuzzy behaviors. Autonomous System 56, 231–246 (2007)CrossRefGoogle Scholar
  11. 11.
    Abdessemed, F., Benmahammed, K., Monacelli, E.: A fuzzy based reactive controller for a non-holonomic mobile robot. Robotics Autonomous System 47, 31–46 (2004)CrossRefGoogle Scholar
  12. 12.
    Pradhan, S.K., Parhi, D.R., Panda, A.K.: Fuzzy logic techniques for navigation of several mobile robots. Application of Soft Computing 9, 290–304 (2009)CrossRefGoogle Scholar
  13. 13.
    Motlagh, O., Tang, S.H., Ismail, N.: Development of a new minimum avoidance system for behavior based mobile robot. Fuzzy Sets System 160, 1929–1946 (2009)CrossRefGoogle Scholar
  14. 14.
    Velagic, J., Osmic, N., Lacevic, B.: Neural Network Controller for Mobile Robot Motion Control. World Academy of Science, Engineering and Technology 47, 193–198 (2008)Google Scholar
  15. 15.
    Singh, M.K., Parhi, D.R.: Intelligent Neuro-Controller for Navigation of Mobile Robot. In: Proceedings of the International Conference on Advances in Computing, Communication and Control, Mumbai, Maharashtra, India, pp. 123–128 (2009)Google Scholar
  16. 16.
    Castro, V., Neira, J.P., Rueda, C.L., Villamizar, J.C., Angel, L.: Autonomous Navigation Strategies for Mobile Robots using a Probabilistic Neural Network (PNN). In: 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, pp. 2795–2800 (2007)Google Scholar
  17. 17.
    Pradhan, S.K., Parhi, D.R., Panda, A.K.: Neuro-fuzzy technique for navigation of multiple mobile robots. Fuzzy Optimum Decision Making 5, 255–288 (2006)CrossRefMATHGoogle Scholar
  18. 18.
    Nefti, S., Oussalah, M., Djouani, K., Pontnau, J.: Intelligent Adaptive Mobile Robot Navigation. Journal of Intelligent and Robotic Systems 30, 311–329 (2001)CrossRefMATHGoogle Scholar
  19. 19.
    Hui, N.B., Mahendar, V., Pratihar, D.K.: Time-optimal, collision-free navigation of a car-like mobile robot using neuro-fuzzy approaches. Fuzzy Sets and Systems 157, 2171–2204 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Godjevac, J., Steele, N.: Neuro-fuzzy control of a mobile robot. Neuro Computing 28, 127–142 (1999)Google Scholar
  21. 21.
    The Math Works Company, Natick, MA, ANFIS Toolbox User’s Guide of MATLABGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Robotics Laboratory,Department of Mechanical EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations