Numerical Optimization of Novel Functions Using vTLBO Algorithm

  • S. Mohankrishna
  • Anima Naik
  • Suresh Chandra Satapathy
  • K. Raja Sekhara Rao
  • B. N. Biswal
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 247)

Abstract

Teaching-Learning-Based Optimization (TLBO) is recently being used as a new, reliable, accurate and robust optimization technique for global optimization. It outperforms some of the well-known metaheuristics regarding constrained benchmark functions, constrained mechanical design, and continuous non-linear numerical optimization problems. However, the success of TLBO in solving some specific types of problems such as shifted function goes down. In this paper we have modified little bit in code of TLBO to improve its performance while solving shifted type of functions. The modified code of TLBO is named as vTLBO (variant TLBO). The performance of vTLBO algorithm is extensively evaluated on 9 shifted and 9 shifted rotated numerical optimization problems and compares favorably with the DE, PSO and conventional TLBO. The results show the better performance of the vTLBO algorithm. Also we have shown that whenever the performance of vTLBO compare with TLBO by taking simple benchmark function, its performance has been degraded.

Keywords

metaheuristics TLBO shifted function shifted rotated function numerical optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)CrossRefGoogle Scholar
  2. 2.
    Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: A novel optimization method for continuous non-linear large scale problems. Inform. Sci. 183, 1–15 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Rao, R.V., Patel, V.: An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int. J. Ind. Eng. Comput. 3 (2012), http://dx.doi.org/10.5267/j.ijiec.2012.03.007
  4. 4.
    Satapathy, S.C., Naik, A.: Data clustering using teaching learning based optimization. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011, Part II. LNCS, vol. 7077, pp. 148–156. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Satapathy, S.C., Naik, A., Parvathi, K.: High dimensional real parameter optimization with teaching learning based optimization. International Journal of Industrial Engineering Computations, © 2012 Growing Science Ltd. All rights reserved (2012), doi:10.5267/j.ijiec.2012.06.001Google Scholar
  6. 6.
    Naik, A., Parvathi, K., Satapathy, S.C., Nayak, R., Pandap, B.S.: QoS multicast routing using Teaching learning based Optimization. In: Aswatha Kumar, M., Selvarani, R., Suresh Kumar, T.V. (eds.) ICAdC 2012. AISC, vol. 174, pp. 49–55. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Satapathy, S.C., Naik, A., Parvathi, K.: 0-1 Integer Programming For Generation maintenance Scheduling in Power Systems based on Teaching Learning Based Optimization (TLBO). In: Parashar, M., Kaushik, D., Rana, O.F., Samtaney, R., Yang, Y., Zomaya, A. (eds.) IC3 2012. CCIS, vol. 306, pp. 53–63. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Krishnanand, K.R., Panigrahi, B.K., Rout, P.K., Mohapatra, A.: Application of Multi-Objective Teaching Learning Based Algorithm to an Economic Load Dispatch Problem with Incommensurable Objectives. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011, Part I. LNCS, vol. 7076, pp. 697–705. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Naik, A., Satapathy, S.C., Parvathi, K.: Improvement of initial cluster center of c-means using Teaching learning based optimization, Accepted and will be published in Procedia Technology. Elsevier and indexed by ScopusGoogle Scholar
  10. 10.
    Naik, A., Satapathy, S.C.: Rough set and Teaching learning based optimization technique for Optimal Features Selection. Ref.: Ms. No. CEJCS-D-12-00042, Under Minor Review in Central European Journal of Computer ScienceGoogle Scholar
  11. 11.
    Satapathy, S.C., Naik, A.: Weighted Teaching-Learning-Based Optimization for global function optimization. Under Review in Applied Soft Computing Ms. Ref. No.: ASOC-D-12-00775Google Scholar
  12. 12.
    Satapathy, S.C., Naik, A.: A Modified Teaching-Learning-Based Optimization (mTLBO) for Global Search. Under Review in Swarm and Evolutionary ComputationGoogle Scholar
  13. 13.
    Rao, R.V., Patel, V.K.: Multi-objective optimization of combined Brayton and inverse Brayton cycles using advanced optimization algorithms. Engineering Optimization (2012), doi:10.1080/0305215X.2011.624183Google Scholar
  14. 14.
    Rao, R.V., Savsani, V.J.: Mechanical design optimization using advanced optimization techniques. Springer, London (2012)CrossRefGoogle Scholar
  15. 15.
    Toğan, V.: Design of planar steel frames using Teaching–Learning Based Optimization. Engineering Structures 34, 225–232 (2012)CrossRefGoogle Scholar
  16. 16.
    Rao, R.V., Kalyankar, V.D.: Parameter optimization of machining processes using a new optimization algorithm. Materials and Manufacturing Processes (2012), doi:10.1080/10426914.2011.602792Google Scholar
  17. 17.
    Liang, J.J., Suganthan, P.N., Deb, K.: Novel composition test functions for numerical global optimization. In: Proc. IEEE Swarm Intell. Symp., Pasadena, CA, pp. 68–75 (June 2005)Google Scholar
  18. 18.
    Salomon, R.: Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39, 263–278 (1996)CrossRefGoogle Scholar
  19. 19.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proc. IEEE Congr. Evol. Comput., pp. 69–73 (1998)Google Scholar
  20. 20.
    Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. TR-95-012 (1995), http://http.icsi.berkeley.edu/

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • S. Mohankrishna
    • 1
  • Anima Naik
    • 2
  • Suresh Chandra Satapathy
    • 3
  • K. Raja Sekhara Rao
    • 4
  • B. N. Biswal
    • 5
  1. 1.IT DeptGitam University and K.L UniversityVaddeswaramIndia
  2. 2.MITSGwaliorIndia
  3. 3.Dept of Computer Science and EngineeringANITSThagarapuvalasaIndia
  4. 4.Dept of Computer Science and EngineeringK.L UniversityVaddeswaramIndia
  5. 5.Bhubaneswar Engineering CollegeBhubaneswarIndia

Personalised recommendations