Advertisement

Grammatical Swarm Based-Adaptable Velocity Update Equations in Particle Swarm Optimizer

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 247)

Abstract

In this work, a new method for creating diversity in Particle Swarm Optimization is devised. The key feature of this method is to derive velocity update equation for each particle in Particle Swarm Optimizer using Grammatical Swarm algorithm. Grammatical Swarm is a Grammatical Evolution algorithm based on Particle Swarm Optimizer. Each particle updates its position by updating velocity. In classical Particle Swarm Optimizer, same velocity update equation for all particles is responsible for creating diversity in the population. Particle Swarm Optimizer has quick convergence but suffers from premature convergence in local optima due to lack in diversity. In the proposed method, different velocity update equations are evolved using Grammatical Swarm for each particles to create the diversity in the population. The proposed method is applied on 8 well-known benchmark unconstrained optimization problems and compared with Comprehensive Learning Particle Swarm Optimizer. Experimental results show that the proposed method performed better than Comprehensive Learning Particle Swarm Optimizer.

Keywords

Particle Swarm Optimizer Genetic Programming Grammatical Evolution Grammatical Swarm Comprehensive Learning Particle Swarm Optimizer Velocity update equations Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Mendes, R., Kennedy, J., Neves, J.: The Fully Informed Particle Swarm: Simpler, Maybe Better. IEEE Transactions on Evolutionary Computation 8(3), 204–210 (2004)CrossRefGoogle Scholar
  3. 3.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006)CrossRefGoogle Scholar
  4. 4.
    Higashi, N., Lba, H.: Particle Swarm Optimization with Gaussian Mutation. In: IEEE Swarm Intelligence Symposium, Indianapolis, pp. 72–79 (2003)Google Scholar
  5. 5.
    Li, C., Liu, Y., Zhou, A., Kang, L., Wang, H.: A Fast Particle Swarm Optimization Algorithm with Cauchy Mutation and Natural Selection Strategy. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 334–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Tang, J., Zhao, X.: Particle Swarm Optimization with Adaptive Mutation. In: WASE International Conference on Information Engineering (2009)Google Scholar
  7. 7.
    Si, T., Jana, N.D., Sil, J.: Particle Swarm Optimization with Adaptive Polynomial Mutation. In: World Congress on Information and Communication Technologies (WICT 2011), Mumbai, India, pp. 143–147 (2011)Google Scholar
  8. 8.
    Si, T., Jana, N.D., Sil, J.: Constrained Function Optimization Using PSO with Polynomial Mutation. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011, Part I. LNCS, vol. 7076, pp. 209–216. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Jana, N.D., Si, T., Sil, J.: Particle Swarm Optimization with Adaptive Mutation in Local Best of Particles. In: 2012 International Congress on Informatics, Environment, Energy and Applications-IEEA 2012, IPCSIT, vol. 38. IACSIT Press, Singapore (2012)Google Scholar
  10. 10.
    Si, T., Jana, N.D.: Particle swarm optimisation with differential mutation. Int. J. Intelligent Systems Technologies and Applications 11(3/4), 212–251 (2012)CrossRefGoogle Scholar
  11. 11.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1998), Piscataway, NJ, pp. 69–73 (1998)Google Scholar
  12. 12.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press (1992)Google Scholar
  13. 13.
    Rashid, M.: Combining PSO algorithm and Honey Bee Food Foraging Behaviour for Solving Multimodal and Dynamic Optimization Problems, Ph.D Dissertation, Department of Computer Science, National University of Computer & Emerging Sciences, Islamabad, Pakistan (2010)Google Scholar
  14. 14.
    Si, T.: Grammatical Differential Evolution Adaptable Particle Swarm Optimization Algorithm. International Journal of Electronics Communications and Computer Engineering(IJECCE) 3(6), 1319–1324 (2012)Google Scholar
  15. 15.
    Si, T.: Grammatical Differential Evolution Adaptable Particle Swarm Optimizer for Artificial Neural Network Training. International Journal of Electronics Communications and Computer Engineering(IJECCE) 4(1), 239–243 (2013)Google Scholar
  16. 16.
    O’Neill, M., Brabazon, A.: Grammatical Swarm: The Generation of Programs by Social Programming. Natural Computing 5(4), 443–462Google Scholar
  17. 17.
    O’Neill, M., Ryan, C.: Grammatical Evolution. IEEE Trans. Evolutionary Computation 5(4), 349–358 (2001)CrossRefGoogle Scholar
  18. 18.
    Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation 3, 82–102 (1999)CrossRefGoogle Scholar
  19. 19.
    Das, N.G.: Statistical Methods (Combined Vol). Hill Education Private Limited, Tata Mcgraw (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tapas Si
    • 1
  • Arunava De
    • 2
  • Anup Kumar Bhattacharjee
    • 3
  1. 1.Department of Computer Science & EngineeringBankura Unnayani Institute of EngineeringBankuraIndia
  2. 2.Department of Information TechnologyDr. B.C Roy Engineering CollegeDurgapurIndia
  3. 3.Department of Electronics and Communication EngineeringNational Institute of TechnologyDurgapurIndia

Personalised recommendations