Application of Fuzzy c-Means Clustering for Polymer Data Mining for Making SAW Electronic Nose

  • Prabha Verma
  • R. D. S. Yadava
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 247)


Polymers provide chemical interfaces to electronic nose sensors for detection of volatile organic compounds. An electronic nose combines a properly selected set of sensors (array) with pattern recognition methods for generating information rich odor response patterns and extracting chemical identities. Each sensor in the array is functionalized by a different polymer for diversely selective sorption of target chemical analytes. Selection of an optimal set of polymers from a long list of potential polymers is crucial for cost-effective high performance development of electronic noses. In this paper we present an application of fuzzy c-means clustering on partition coefficient data available for target vapors and most prospective polymers for selection of minimum number of polymers that can create maximum discrimination between target chemical compounds. The selection method has been validated by simulating a polymer coated surface acoustic wave (SAW) sensor array for monitoring fish freshness.


Fuzzy c-means clustering polymer selection SAW electronic nose fish quality monitoring pattern recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Firestein, S.: How the Olfactory System Makes Sense of Scents. Nature 413, 211–218 (2001)CrossRefGoogle Scholar
  2. 2.
    Persaud, K., Dodd, G.: Analysis of Discrimination Mechanisms in the Mammalian Olfactory System using a Model Nose. Nature 299, 352–355 (1982)CrossRefGoogle Scholar
  3. 3.
    Gardner, J.W., Bartlett, P.N.: Electronic Noses: Principles and Applications. Oxford University Press, New York (1999)Google Scholar
  4. 4.
    Hines, E.L., Biolet, P., Gardner, J.W., Gongora, M.A.: Pattern Analysis for Electronic Nose. In: Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W. (eds.) Handbook of Machine Olfaction: Electronic Nose Technology. Wiley-VCH, Weinheim (2003)Google Scholar
  5. 5.
    Carey, W.P., Beebe, K.R., Kowalski, B.R.: Selection of Adsorbates for Chemical Sensor Arrays by Pattern Recognition. Anal. Chem. 58, 149–153 (1986)CrossRefGoogle Scholar
  6. 6.
    Grate, J.W.: Acoustic Wave Microsensor Arrays for Vapor Sensing. Chem. Rev. 100, 2627–2648 (2000)CrossRefGoogle Scholar
  7. 7.
    Park, J., Groves, W.A., Zellers, E.T.: Vapor Recognition with Small Arrays of Polymer-Coated Microsensors. Anal. Chem. 71, 3877–3886 (1999)CrossRefGoogle Scholar
  8. 8.
    Yadava, R.D.S., Chaudhary, R.: Solvation Transduction and Independent Component Analysis for Pattern Recognition in SAW Electronic Nose. Sens. Actuators B 113, 1–21 (2006)CrossRefGoogle Scholar
  9. 9.
    Yadava, R.D.S.: Modeling, Simulation, and Information Processing for Development of a Polymeric Electronic Nose System. In: Korotcenkov, G. (ed.) Chemical Sensors – Simulation and Modeling, vol. 3, pp. 411–502. Momentum Press, New York (2012)Google Scholar
  10. 10.
    Mahboob, S., Hussain, B., Alkahem, H.F., Al-Akel, A.S., Iqbal, Z.: Volatile Aroma Comounds and Organoleptic Comparisons of Meat from Wild and Culured Cirrhina Mrigala and cyprinus carpio. Adv. in Nat. and App. Sci. 3, 113–126 (2009)Google Scholar
  11. 11.
    Phan, N.T., Kim, K.H., Jeon, E.C., Kim, U.H., Sohn, J.R., Pandey, S.K.: Analysis of Volatile Organic Compounds Released during Food Decaying Processes. Env. Monit. Assess. 184, 1683–1692 (2012)CrossRefGoogle Scholar
  12. 12.
    Sadok, S., Uglow, R.F., Haswell, S.J.: Determination of Trimethylamine in Fish by Flow Injection Analysis. Anal. Chim. Acta 321, 69–74 (1996)CrossRefGoogle Scholar
  13. 13.
    Shalaby, A.R.: Significance of Biogenic Amines to Food Safety and Human Health. Food Res. Inter. 29, 675–690 (1996)CrossRefGoogle Scholar
  14. 14.
    Dyer, W.J.: Amines in Fish Muscle: I. Colorometric Determination of Trimethylamine as the Picrate Salt. J. Fish. Res. Bd. Can. 6, 351–358 (1945)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tarr, H.L.A.: Trimethylamine Formation in Relation to the Viable Bacterial Population of Spoiling Fish Muscle. Nature 142, 1078–1078 (1938)CrossRefGoogle Scholar
  16. 16.
    Bota, G.M., Harrington, P.B.: Direct Detection of Trimethylamine in Meat Food Products using Ion Mobility Spectrometry. Talanta 68, 629–635 (2006)CrossRefGoogle Scholar
  17. 17.
    Abraham, M.H.: Scales of Solute Hydrogen Bonding: Their Construction and Application to Physicochemical and Biochemical Process. Chem. Soc. Rev. 22, 73–83 (1993)CrossRefGoogle Scholar
  18. 18.
    Grate, J.W., Abraham, M.H., Wise, B.M.: Design and Information Content of Arrays of Sorption-based Vapor Sensors using Solubility Interactions and Linear Solvation Energy Relationships. In: Ryan, M.A., Shevade, A.V., Taylor, C.J., Homer, M.L., Blanco, M., Stetter, J.R. (eds.) Computational Methods for Sensor Material Selection, pp. 193–218. Springer Science, Business Media, New York (2009)Google Scholar
  19. 19.
    Ho, C.K., Lindgren, E.R., Rawlinson, K.S., McGrath, L.K., Wright, J.L.: Development of a Surface Acoustic Wave Sensor for In-Situ Monitoring of Volatile Organic Compounds. Sensors 3, 236–247 (2003)CrossRefGoogle Scholar
  20. 20.
    Matatagui, D., Marti, J., Fernandez, M.J., Fontecha, J.L., Guturrez, J., Gracia, I., Cane, C., Horrilio, M.C.: Chemical Warfare Agents Simulants Detection with an Optimized SAW Sensor Array. Sens. and Actu. B 154, 199–205 (2011)CrossRefGoogle Scholar
  21. 21.
    Santiuste, J.M., Dominguez, J.A.G.: Study of Retention Interactions of Solute And Stationary Phase in the Light of the Solvation Model Theory. Ana. Chi. Acta 405, 335–346 (2000)CrossRefGoogle Scholar
  22. 22.
    Sanchez, I.C., Rodgers, P.A.: Solubility of Gases in Polymers. Pure & App. Chem. 62, 2107–2114 (1990)CrossRefGoogle Scholar
  23. 23.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum Press, New York (1981)CrossRefGoogle Scholar
  24. 24.
    Chiu, S.: Fuzzy Model Identification Based on Cluster Estimation. J. of Inte. Fuzzy Syst. 2, 267–278 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Martin, S.J., Frye, G.C., Senturia, S.D.: Dynamics and Response of Polymer-Coated Surface Acoustic Wave Devices: Effect of Viscoelastic Properties and Film Resonance. Ana. Chem. 66, 2201–2219 (1994)CrossRefGoogle Scholar
  26. 26.
    Yadava, R.D.S., Kshetrimayum, R., Khaneja, M.: Multifrequency Characterization of Viscoelastic Polymers and Vapor Sensing based on SAW Oscillators. Ultrasonics 49, 638–645 (2009)CrossRefGoogle Scholar
  27. 27.
    Ferry, J.D.: Viscoelastic properties of polymer. John Wiley and Sons, Newyork (1980)Google Scholar
  28. 28.
    Jha, S.K., Yadava, R.D.S.: Preprocessing of SAW Sensor Array Data and Pattern Recognition. IEEE Sen. J. 9, 1202–1208 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Sensor & Signal Processing Laboratory, Department of Physics, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations