Advertisement

Voltage Response of Non-Uniform Arrays of Bi-SQUIDs

  • Patrick Longhini
  • Susan Berggren
  • Anna Leese de Escobar
  • Antonio Palacios
  • Sarah Rice
  • Benjamin Taylor
  • Visarath In
  • Oleg A. Mukhanov
  • Georgy Prokopenko
  • Martin Nisenoff
  • Edmond Wong
  • Marcio C. De Andrade
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Multi-loop arrays of Josephson Junctions (JJ) with non-uniform area distributions, which are known as Superconducting Quantum Interference Filters (SQIF), are the most highly sensitive sensors of changes in applied magnetic field as well as the absolute magnitude of magnetic fields. The non-uniformity of the loop sizes allows the array to produce a unique collective voltage response that has a pronounced single peak with a large voltage swing around zero magnetic field. To obtain high linear dynamic range, which is critical for a wide variety of applications, the linearity of the slope of the anti-peak response must be improved. We propose a novel scheme for enhancing linearity—a new configuration combining the SQIF array concept with the recently introduced bi-SQUID configuration, in which each individual SQUID loop is made up of three JJs as oppose to using two JJs per loop in standard DC SQUIDs. We show, computationally, that the additional junction offers a viable linearization method for optimizing the voltage response and dynamic range of SQIF arrays. We have realized SQIF arrays based on bi-SQUID cells and present first experimental results.

Keywords

Magnetic Flux Voltage Output Critical Current Josephson Junction Total Harmonic Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge support from the Tactical SIGINT Technology Program N66001-08-D-0154. We also wish to acknowledge support from the Office of Naval Research (ONR), Code 30, ONR NREIP Internship Program, the SPAWAR internal research funding (S&T) program, SPAWAR SBIR contracts N00039-08-C-0024 and N66001-09-R-0073. O. M. and G. P. thank V. Kornev, I. Soloviev, N. Klenov, A. Sharafiev for useful discussion related to bi-SQUID designs, D. Kirichenko for useful design and test advices, S. Tolpygo, R. Hunt, J. Vivalda, D. Yohannes, D. Amparo for chips fabrication, V. Dotsenko for cryoprobe design and fabrication.

References

  1. 1.
    R.L. Fagaly, Superconducting quantum interference device instruments and applications. Rev. Sci. Instrum. 77, 101101 (2006)CrossRefGoogle Scholar
  2. 2.
    L.E. Fong, J.R. Holzer, K.K. McBride, E.A. Lima, F. Baudenbacher, M. Radparvar, High resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications. Rev. Sci. Instrum. 76, 053703 (2005)CrossRefGoogle Scholar
  3. 3.
    M. Inchiosa, A. Bulsara, K. Wiesenfeld, L. Gammaitoni, Phys. Rev. Lett. A252, 20 (1999)CrossRefGoogle Scholar
  4. 4.
    J.A. Acebron, A.R. Bulsara, M.E. Inchiosa, W.J. Rappel, Europhys. Lett. 56, 354 (2001)CrossRefGoogle Scholar
  5. 5.
    A. Palacios, J. Aven, P. Longhini, V. In, A. Bulsara, Cooperative dynamics in coupled noisy dynamical systems near a critical point: the DC SQUID as a case study. Phys. Rev. E 74, 021122 (2006)CrossRefGoogle Scholar
  6. 6.
    K.G. Stawiasz, M.B. Ketchen, Noise measurements of series SQUID arrays. IEEE Trans. Appl. Supercond. 3, 1808 (1993)CrossRefGoogle Scholar
  7. 7.
    J. Oppenlander, C. Haussler, N. Schopohl, Non-Phi(0)-periodic macroscopic quantum interference in one-dimensional parallel Josephson junction arrays with unconventional grating structure. Phys. Rev. B 63, 024511 (2001)CrossRefGoogle Scholar
  8. 8.
    C. Haussler, J. Oppenlander, N. Schopohl, Nonperiodic flux to voltage conversion of series arrays of DC superconducting quantum interference devices. J. Appl. Phys. 89, 1875 (2001)CrossRefGoogle Scholar
  9. 9.
    J. Oppenlander, C. Haussler, N. Schopohl, Superconducting multiple loop quantum interferometers. IEEE Trans. Appl. Supercond. 11, 1271 (2001)CrossRefGoogle Scholar
  10. 10.
    V.K. Kornev, I.I. Soloviev, J. Oppenlaender, C. Haeussler, N. Schopohl, The oscillation linewidth and noise characteristics of a parallel superconducting quantum interference filter. Supercond. Sci. Technol. 17, S406 (2004)CrossRefGoogle Scholar
  11. 11.
    J. Oppenlander, C. Haussler, A. Friesch, J. Tomes, P. Caputo, T. Trauble, N. Schopohl, Superconducting quantum interference filters operated in commercial miniature cryocoolers. IEEE Trans. Appl. Supercond. 15, 936 (2005)CrossRefGoogle Scholar
  12. 12.
    V.K. Kornev, I.I. Soloviev, N.V. Klenov, O.A. Mukhanov, Bi-SQUID: a novel linearization method for DC squid voltage response. Supercond. Sci. Technol. 22, 114011 (2009)CrossRefGoogle Scholar
  13. 13.
    V. Kornev, I. Soloviev, N. Klenov, O. Mukhanov, Progress in high-linearity multi-element Josephson structures. Phys. C Supercond. 470, 886 (2010)CrossRefGoogle Scholar
  14. 14.
    V.K. Kornev, I.I. Soloviev, N.V. Klenov, A.V. Sharafiev, O.A. Mukhanov, Linear bi-SQUID arrays for electrically small antennas. IEEE Trans. Appl. Supercond. 21, 713 (2011)CrossRefGoogle Scholar
  15. 15.
    V. Kornev, I. Soloviev, N. Klenov, A. Sharafiev, O. Mukhanov, Array designs for active electrically small superconductive antennas. Phys. C 479, 119–122 (2012)CrossRefGoogle Scholar
  16. 16.
    I.I. Soloviev, V.K. Kornev, N.V. Klenov, O.A. Mukhanov, Superconducting Josephson structures with high linearity of transformation of magnetic signal into voltage. Phys. Solid State 52, 2252 (2010)CrossRefGoogle Scholar
  17. 17.
    S.-G. Lee, Y. Huh, G.-S. Park, I.-S. Kim, Y.K. Park, J.-C. Park, Serial array high Tc SQUID magnetometer. IEEE Trans. Appl. Supercond. 7, 3347 (1997)CrossRefGoogle Scholar
  18. 18.
    R.P. Welty, J.M. Martinis, A series array of DC SQUIDs. IEEE Trans. Magn. 27, 2924 (1991)CrossRefGoogle Scholar
  19. 19.
    M. Matsuda, K. Nakamura, H. Mikami, S. Kuriki, Fabrication of magnetometers with multiple-SQUID arrays. IEEE Trans. Appl. Supercond. 15, 817 (2005)CrossRefGoogle Scholar
  20. 20.
    M. Horibe, Y. Tarutani, K. Tanabe, High-speed operation of SQUID array-type interface circuits using a cryocooler. Phys. C Supercond. 412–414, 1533 (2004)CrossRefGoogle Scholar
  21. 21.
    W.-T. Tsang, T. van Duzer, DC analysis of parallel arrays of two and three Josephson junctions. J. Appl. Phys. 46, 4573 (1975)CrossRefGoogle Scholar
  22. 22.
    R. Gerdemann, L. Alff, A. Beck, O.M. Froehlich, B. Mayer, R. Gross, Josephson vortex flow transistors based on parallel arrays of \(\text{ YBa }_{2}\text{ Cu }_{3}\text{ O }_{7}\)-\(\delta \): bicrystal grain boundary junctions. IEEE Trans. Appl. Supercond. 5, 3292 (1995)CrossRefGoogle Scholar
  23. 23.
    HYPRES Design Rules. http://www.hypres.com

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Patrick Longhini
    • 1
  • Susan Berggren
    • 2
  • Anna Leese de Escobar
    • 1
  • Antonio Palacios
    • 2
  • Sarah Rice
    • 1
  • Benjamin Taylor
    • 1
  • Visarath In
    • 1
  • Oleg A. Mukhanov
    • 3
  • Georgy Prokopenko
    • 3
  • Martin Nisenoff
    • 4
  • Edmond Wong
    • 1
  • Marcio C. De Andrade
    • 1
  1. 1.Space and Naval Warfare Systems CenterSan DiegoUSA
  2. 2.Nonlinear Dynamical Systems Group, Department of MathematicsSan Diego State UniversitySan DiegoUSA
  3. 3.HYPRES, Inc.ElmsfordUSA
  4. 4.M. Nisenoff AssociatesMinneapolisUSA

Personalised recommendations