Advertisement

The Role of Duty Cycle in a Three Cell Central Pattern Generator

  • Jeremy Wojcik
  • Robert Clewley
  • Andrey Shilnikov
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

We describe a novel computational approach to reduce detailed models of central pattern generation to an equationless mapping that can be studied geometrically. Changes in model parameters, coupling properties, or external inputs produce qualitative changes in the mapping. These changes uncover possible biophysical mechanisms for control and modulation of rhythmic activity. Our analysis does not require knowledge of the equations that model the system, and so provides a powerful new approach to studying detailed models, applicable to a variety of biological phenomena beyond motor control. We demonstrate our technique on a motif of three reciprocally inhibitory cells that is able to produce multiple patterns of bursting rhythms. In particular, we examine the qualitative geometric structure of two-dimensional maps for phase lag between the cells.

Keywords

Duty Cycle Central Pattern Generator Burst Onset Central Pattern Generator Model Network Central Pattern Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Marder, R.L. Calabrese, Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996)Google Scholar
  2. 2.
    F. Skinner, N. Kopell, E. Marder, Mechanisms for oscillation and frequency control in networks of mutually inhibitory relaxation oscillators. J. Comput. Neurosci. 1, 69–97 (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    A. Selverston, Model Neural Networks and Behavior (Plenum Press, New York, 1985)Google Scholar
  4. 4.
    K.L. Briggman, W.B. Kristan, Multifunctional pattern generating circuits. Annu. Rev. Neurosci. 31, 271–294 (2008)CrossRefGoogle Scholar
  5. 5.
    W.B. Kristan, R.L. Calabrese, W.O. Friesen, Neuronal basis of leech behaviors. Prog. Neurobiol. 76, 279–327 (2005)CrossRefGoogle Scholar
  6. 6.
    C.C. Canavier, D.A. Baxter, J.W. Clark, J.H. Byrne, Control of multistability in ring circuits of oscillators. Biol. Cybern. 80, 87–102 (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    G.B. Ermentrout, K. Kopell, Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc. Natl. Acad. Sci. USA 95, 1259–1264 (1998)CrossRefGoogle Scholar
  8. 8.
    R. Milo, et al., Science 298, 824–827 (2002)Google Scholar
  9. 9.
    A. Prinz, D. Bucher, E. Marder, Similar network activity from disparate circuit parameters. Nat. Neurosci. 7(12), 1345–1352 (2004)CrossRefGoogle Scholar
  10. 10.
    M.I. Rabinovich, P. Varona, A.I. Selverston, H.D. Abarbanel, Dynamical principles in neuroscience. Rev. Modern. Phys. 78(4), 1213–1265 (2006)CrossRefGoogle Scholar
  11. 11.
    O. Sporns, R. Kötter, Motifs in brain networks. PLoS Biol. 2(11), 1910–1918 (2004)Google Scholar
  12. 12.
    A. Shilnikov, R. Gordon, I. Belykh, Polyrhythmic synchronization in bursting network motif. Chaos 18, 037120 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    N. Kopell, D. Somers, Rapid synchronization through fast threshold modulation. Biol. Cybern. 68(5), 393–407 (1993)CrossRefGoogle Scholar
  14. 14.
    A. Shilnikov, G. Cymbalyuk, Transition between tonic-spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94, 048101-4 (2005)Google Scholar
  15. 15.
    I. Belykh, A. Shilnikov, When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. Phys. Rev. Lett. 101, 078102-4 (2008)Google Scholar
  16. 16.
    J. Wojcik, A.L. Shilnikov, Order parameter for bursting polyrhythms in multifunctional central pattern generators. Phys. Rev. E 83, 056209-6 (2011)Google Scholar
  17. 17.
    J. Wojcik, Neural Cartography: Computer Assisted Poincaré Return Mappings for Biological Oscillations Mathematics Dissertations. Paper 10. http://digitalarchive.gsu.edu/math_diss/10 (2012)

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jeremy Wojcik
    • 1
  • Robert Clewley
    • 1
  • Andrey Shilnikov
    • 1
  1. 1.Neuroscience Institute and Department of Mathematics and StatisticsGeorgia State UniversityAtlantaUSA

Personalised recommendations