Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

  • 844 Accesses

Abstract

Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements are presented to demonstrate the viability of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.M. Myneni, T.A. Barr, B.R. Reed, S.D. Pethel, N.J. Corron, High-precision ranging using a chaotic laser pulse train. Appl. Phys. Lett. 78, 1496–1498 (2001)

    Article  Google Scholar 

  2. B.C. Flores, E.A. Solis, G. Thomas, Assessment of chaos-based FM signals for range- Doppler imaging. IEE Proc.-Radar Sonar Navig. 150, 313–322 (2003)

    Google Scholar 

  3. F.-Y. Lin, J.-M. Liu, Ambiguity functions of laser-based chaotic radar. IEEE J. Quantum Elec. 40, 1732–1738 (2004)

    Article  Google Scholar 

  4. F.-Y. Lin, J.-M. Liu, Chaotic radar using nonlinear laser dynamics. IEEE J. Quantum Elec. 40, 815–820 (2004)

    Article  Google Scholar 

  5. V. Venkatasubramanian, H. Leung, A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging. IEEE Signal Proc. Lett. 12, 528–531 (2005)

    Article  Google Scholar 

  6. T.L. Carroll, Chaotic system for self-synchronizing Doppler measurement. Chaos 15, 013109 (2005)

    Article  Google Scholar 

  7. T.L. Carroll, Optimizing chaos-based signals for complex targets. Chaos 17, 033103 (2007)

    Article  Google Scholar 

  8. Z. Liu, X. Zhu, W. Hu, F. Jiang, Principles of chaotic signal radar. Int. J. Bifurcation Chaos Appl. Sci. Eng. 17, 1735–1739 (2007)

    Article  MATH  Google Scholar 

  9. S. Qiao, Z.G. Shi, K.S. Chen, W.Z. Cui, W. Ma, T. Jiang, L.X. Ran, A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization. Prog. Electromagn. Res. 75, 225–237 (2007)

    Article  Google Scholar 

  10. Z.G. Shi, S. Qiao, K.S. Chen, W.Z. Cui, W. Ma, T. Jiang, L.X. Ran, Ambiguity functions of direct chaotic radar employing microwave chaotic Colpitts oscillator. Prog. Electromagn. Res. 77, 1–14 (2007)

    Article  Google Scholar 

  11. T.L. Carroll, Adaptive chaotic maps for identification of complex targets. IET Radar Sonar Navig. 2, 256–262 (2008)

    Article  Google Scholar 

  12. T. Jiang, S. Qiao, Z. Shi, L. Peng, J. Huangfu, W.Z. Cui, W. Ma, L.X. Ran, Simulation and experimental evaluation of the radar signal performance of chaotic signals generated from a microwave Colpitts oscillator. Prog. Electromagn. Res. 90, 15–30 (2009)

    Article  Google Scholar 

  13. J.N. Blakely, N.J. Corron, Concept for low cost chaos radar using coherent reception. Proc. SPIE 8021, 80211H (2011)

    Article  Google Scholar 

  14. N. J. Corron, J. N. Blakely, Chaos for communication and radar. Proc. Int. Symp. Nonlinear Theory Appl. (NOLTA2011), 322–325 (2011)

    Google Scholar 

  15. T. Saito, H. Fujita, Chaos in a manifold piecewise linear system. Electron. Commun. Jpn. 1 64, 9–17 (1981)

    Google Scholar 

  16. N. J. Corron, J. N. Blakely, M. T. Stahl, A matched filter for chaos. Chaos 20, 023123 (2010)

    Google Scholar 

  17. H. Zumbahlen (ed.), Linear Circuit Design Handbook (Elsevier/Newnes Press, USA, 2008)

    Google Scholar 

  18. G. L. Turin, An introduction to matched filters. IRE T. Inform. Theor. 6, 311–329 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn D. Pethel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Corron, N.J., Stahl, M.T., Blakely, J.N., Pethel, S.D. (2014). Acoustic Detection and Ranging Using Solvable Chaos. In: In, V., Palacios, A., Longhini, P. (eds) International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012). Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-02925-2_19

Download citation

Publish with us

Policies and ethics