Advertisement

Acoustic Detection and Ranging Using Solvable Chaos

  • Ned J. Corron
  • Mark T. Stahl
  • Jonathan N. Blakely
  • Shawn D. Pethel
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements are presented to demonstrate the viability of the approach.

Keywords

Digital Signal Processor Shift Register Matched Filter Clock Signal Microphone Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K.M. Myneni, T.A. Barr, B.R. Reed, S.D. Pethel, N.J. Corron, High-precision ranging using a chaotic laser pulse train. Appl. Phys. Lett. 78, 1496–1498 (2001)CrossRefGoogle Scholar
  2. 2.
    B.C. Flores, E.A. Solis, G. Thomas, Assessment of chaos-based FM signals for range- Doppler imaging. IEE Proc.-Radar Sonar Navig. 150, 313–322 (2003)Google Scholar
  3. 3.
    F.-Y. Lin, J.-M. Liu, Ambiguity functions of laser-based chaotic radar. IEEE J. Quantum Elec. 40, 1732–1738 (2004)CrossRefGoogle Scholar
  4. 4.
    F.-Y. Lin, J.-M. Liu, Chaotic radar using nonlinear laser dynamics. IEEE J. Quantum Elec. 40, 815–820 (2004)CrossRefGoogle Scholar
  5. 5.
    V. Venkatasubramanian, H. Leung, A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging. IEEE Signal Proc. Lett. 12, 528–531 (2005)CrossRefGoogle Scholar
  6. 6.
    T.L. Carroll, Chaotic system for self-synchronizing Doppler measurement. Chaos 15, 013109 (2005)CrossRefGoogle Scholar
  7. 7.
    T.L. Carroll, Optimizing chaos-based signals for complex targets. Chaos 17, 033103 (2007)CrossRefGoogle Scholar
  8. 8.
    Z. Liu, X. Zhu, W. Hu, F. Jiang, Principles of chaotic signal radar. Int. J. Bifurcation Chaos Appl. Sci. Eng. 17, 1735–1739 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    S. Qiao, Z.G. Shi, K.S. Chen, W.Z. Cui, W. Ma, T. Jiang, L.X. Ran, A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization. Prog. Electromagn. Res. 75, 225–237 (2007)CrossRefGoogle Scholar
  10. 10.
    Z.G. Shi, S. Qiao, K.S. Chen, W.Z. Cui, W. Ma, T. Jiang, L.X. Ran, Ambiguity functions of direct chaotic radar employing microwave chaotic Colpitts oscillator. Prog. Electromagn. Res. 77, 1–14 (2007)CrossRefGoogle Scholar
  11. 11.
    T.L. Carroll, Adaptive chaotic maps for identification of complex targets. IET Radar Sonar Navig. 2, 256–262 (2008)CrossRefGoogle Scholar
  12. 12.
    T. Jiang, S. Qiao, Z. Shi, L. Peng, J. Huangfu, W.Z. Cui, W. Ma, L.X. Ran, Simulation and experimental evaluation of the radar signal performance of chaotic signals generated from a microwave Colpitts oscillator. Prog. Electromagn. Res. 90, 15–30 (2009)CrossRefGoogle Scholar
  13. 13.
    J.N. Blakely, N.J. Corron, Concept for low cost chaos radar using coherent reception. Proc. SPIE 8021, 80211H (2011)CrossRefGoogle Scholar
  14. 14.
    N. J. Corron, J. N. Blakely, Chaos for communication and radar. Proc. Int. Symp. Nonlinear Theory Appl. (NOLTA2011), 322–325 (2011)Google Scholar
  15. 15.
    T. Saito, H. Fujita, Chaos in a manifold piecewise linear system. Electron. Commun. Jpn. 1 64, 9–17 (1981)Google Scholar
  16. 16.
    N. J. Corron, J. N. Blakely, M. T. Stahl, A matched filter for chaos. Chaos 20, 023123 (2010)Google Scholar
  17. 17.
    H. Zumbahlen (ed.), Linear Circuit Design Handbook (Elsevier/Newnes Press, USA, 2008)Google Scholar
  18. 18.
    G. L. Turin, An introduction to matched filters. IRE T. Inform. Theor. 6, 311–329 (1960)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ned J. Corron
    • 1
  • Mark T. Stahl
    • 1
  • Jonathan N. Blakely
    • 1
  • Shawn D. Pethel
    • 1
  1. 1.U. S. Army RDECOMRedstone ArsenalAlabamaUSA

Personalised recommendations