Advertisement

Exploiting Chaos for Quantum Control

  • Ying-Cheng Lai
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

The field of Quantum Chaos is referred to as the study of quantum behaviors of systems whose corresponding classical dynamics are chaotic, or study of quantum manifestations of classical chaos. Equivalently, it means that quantum behaviors depend on the nature of the classical dynamics, implying that classical chaos can be used to control or manipulate quantum behaviors. We discuss two examples here: using transient chaos to control quantum transport in nanoscale systems and exploiting chaos to regularize relativistic quantum tunneling dynamics in Dirac fermion and graphene systems.

Keywords

Quantum Tunneling Classical Dynamic Quantum Transport Tunneling Rate Unstable Periodic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The main idea of using chaos to manipulate quantum behaviors was generated through extensive discussions with Dr. L. Pecora from Naval Research Laboratory in January 2011 at Dr. M. Shlesinger’s ONR Program Review Meeting at UCSD. The computations and theoretical analyses reported in the references [4, 5, 30, 31] on which this Review is based were mainly carried out by Dr. R. Yang, Dr. X. Ni, and Dr. L. Huang, all formerly affiliated with ASU.

References

  1. 1.
    E. Ott, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, D. Maza, Phys. Rep. 329, 103 (2000)CrossRefMathSciNetGoogle Scholar
  3. 3.
    L.M. Pecora, H. Lee, D.-H. Wu, T. Antonsen, M.-J. Lee, E. Ott, Phys. Rev. E 83, 065201 (2011)CrossRefGoogle Scholar
  4. 4.
    R. Yang, L. Huang, Y.-C. Lai, L.M. Pecora, Appl. Phys. Lett. 100, 093105 (2012)CrossRefGoogle Scholar
  5. 5.
    X. Ni, L. Huang, Y.-C. Lai, L.M. Pecora, EPL 98, 50007 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  7. 7.
    See, for example, R. A. Jalabert, H. U. Baranger, and A. D. Stone, Phys. Rev. Lett. 65, 2442 (1990)Google Scholar
  8. 8.
    R. Ketzmerick, Phys. Rev. B 54, 10841 (1996)CrossRefGoogle Scholar
  9. 9.
    R.P. Taylor, R. Newbury, A.S. Sachrajda, Y. Feng, P.T. Coleridge, C. Dettmann, N. Zhu, H. Guo, A. Delage, P. J. Kelly, Z. Wasilewski. Phys. Rev. Lett. 78, 1952 (1997)Google Scholar
  10. 10.
    A.S. Sachrajda, R. Ketzmerick, C. Gould, Y. Feng, P.J. Kelly, A. Delage, Z. Wasilewski, Phys. Rev. Lett. 80, 1948 (1998)CrossRefGoogle Scholar
  11. 11.
    B. Huckestein, R. Ketzmerick, C.H. Lewenkopf, Phys. Rev. Lett. 84, 5504 (2000)CrossRefGoogle Scholar
  12. 12.
    G. Casati, I. Guarneri, G. Maspero, Phys. Rev. Lett. 84, 63 (2000)CrossRefGoogle Scholar
  13. 13.
    R. Crook, C.G. Smith, A.C. Graham, I. Farrer, H.E. Beere, D.A. Ritchie, Phys. Rev. Lett. 91, 246803 (2003)CrossRefGoogle Scholar
  14. 14.
    W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    R. Akis, J.P. Bird, D.K. Ferry, Appl. Phys. Lett. 81, 129 (2002)CrossRefGoogle Scholar
  16. 16.
    D.K. Ferry, R. Akis, J.P. Bird, Phys. Rev. Lett. 93, 026803 (2004)CrossRefGoogle Scholar
  17. 17.
    U. Fano, Phys. Rev. 124, 1866 (1961)CrossRefzbMATHGoogle Scholar
  18. 18.
    H. Ishio, Phys. Rev. E 62, R3035 (2000)CrossRefGoogle Scholar
  19. 19.
    Given a closed Hamiltonian system that exhibits fully developed chaos in the classical limit, one might expect the quantum wavefunctions associated with various eigenstates to be more or less uniform in the physical space. However, in the seminal work of McDonald and Kaufman [Phys. Rev. Lett. 42, 1189 (1979) and Phys. Rev. A 37, 3067 (1988)], it was observed that quantum eigen-wavefunctions can be highly non-uniform in the chaotic stadium billiard. A systematic study was subsequently carried out by Heller [Phys. Rev. Lett. 53, 1515 (1984)], who established the striking tendency for wavefunctions to concentrate about classical unstable periodic orbits, which he named quantum scars. Semiclassical theory was then developed by Bogomolny [Physica D 31, 169 (1988)] and Berry [Proc. Roy. Soc. (London) A 423, 219 (1989)], providing a general understanding of the physical mechanism of quantum scars. The phenomenon of quantum scarring was deemed counterintuitive and surprising but only for chaotic systems, as the phase space of an integrable system is not ergodic so that the quantum wavefunctions are generally not expected to be uniform. Relativistic quantum scars in chaotic graphene systems have also been reported [L. Huang, Y.-C. Lai, D. K. Ferry, S. M. Goodnick, and R. Akis, Phys. Rev. Lett. 103, 054101 (2009)].Google Scholar
  20. 20.
    Y.-C. Lai, T. Tél, Transient Chaos (Springer, New York, 2011)CrossRefzbMATHGoogle Scholar
  21. 21.
    Y. Sinai, Russ. Math. Surv. 25, 137 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    See, for example, Chapter 18 in J. R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge University Press, Cambridge 1999)Google Scholar
  23. 23.
    K.S. Novoselov et al., Science 306, 666 (2004)CrossRefGoogle Scholar
  24. 24.
    C. Berger et al., J. Phys. Chem. B 108, 19912 (2004)CrossRefGoogle Scholar
  25. 25.
    C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)CrossRefGoogle Scholar
  26. 26.
    A.H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009)CrossRefGoogle Scholar
  27. 27.
    R. Blümel, U. Smilansky, Phys. Rev. Lett. 60, 477 (1988)CrossRefGoogle Scholar
  28. 28.
    R. Blümel, U. Smilansky, Physica D 36, 111 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Y.-C. Lai, R. Blümel, E. Ott, C. Grebogi, Phys. Rev. Lett. 68, 3491 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    R. Yang, L. Huang, Y.-C. Lai, C. Grebogi, and L. M. Pecora, Chaos 23, 013125 (2013)Google Scholar
  31. 31.
    X. Ni, L. Huang, Y.-C. Lai, C. Grebogi, Phys. Rev. E 86, 015702 (2012)Google Scholar
  32. 32.
    P. Strange, Relativistic Quantum Mechanics with Applications in Condensed Matter Physics and Atomic Physics (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar
  33. 33.
    M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)CrossRefGoogle Scholar
  34. 34.
    C.W.J. Beenakker, Colloquium: andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337 (2008)CrossRefGoogle Scholar
  35. 35.
    F. Haake, Quantum Signatures of Chaos, 2nd edn. (Springer, Berlin, 2001)CrossRefzbMATHGoogle Scholar
  36. 36.
    H.J. Stöckmann, Quantum Chaos: An Introduction (Cambridge University Press, Cambridge, 1999)zbMATHGoogle Scholar
  37. 37.
    W. Breymann, Z. Kov’acs, T. Tél, Phys. Rev. E 50, 1994 (1994)CrossRefGoogle Scholar
  38. 38.
    G.-L. Wang, L. Ying, Y.-C. Lai, and C. Grebogi, Phys. Rev. E 87, 052908 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Electrical, Computer and Energy Engineering Arizona State UniversityTempeUSA

Personalised recommendations