Advertisement

Atomic Movies of Laser-Induced Structural and Phase Transformations from Molecular Dynamics Simulations

  • Chengping Wu
  • Eaman T. Karim
  • Alexey N. Volkov
  • Leonid V. ZhigileiEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 191)

Abstract

Molecular dynamics (MD) simulations of laser-materials interactions are playing an important role in investigation of complex and highly non-equilibrium processes involved in short pulse laser processing and surface modification. This role is defined by the ability of MD simulations to reveal in-depth information on the structural and phase transformations induced by the laser excitation and, at the same time, to provide clear visual representations, or “atomic movies,” of laser-induced dynamic processes. This chapter provides a brief overview of recent progress in the description of laser coupling and relaxation of photo-excited states in metals, semiconductors, insulators and molecular systems within the general framework of the classical MD technique and presents several examples of MD simulations of laser melting, generation of crystal defects, photomechanical spallation, explosive boiling and molecular entrainment in laser ablation. Possible directions of future progress in atomistic modeling of laser-materials interactions and the potential role of MD simulations in the design of an integrated multiscale computational model capable of accounting for interrelations between processes occurring at different time- and length-scales are discussed.

Keywords

Molecular Dynamic Simulation Laser Fluence Classical Molecular Dynamic Molecular Dynamic Model Irradiate Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge financial support provided by the National Science Foundation (USA) through Grants DMR-0907247, CBET-1033919, and CMMI-1301298 and by the Air Force Office of Scientific Research through Grant FA9550-10-1-0541. Computational support was provided by the Oak Ridge Leadership Computing Facility (projects MAT009 and MAT048) and the National Science Foundation through the Extreme Science and Engineering Discovery Environment (projects TG-DMR110090 and TG-DMR130010).

References

  1. 1.
    V. Recoules, J. Clérouin, G. Zérah, P.M. Anglade, S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006)ADSGoogle Scholar
  2. 2.
    F. Bottin, G. Zérah, Phys. Rev. B 75, 174114 (2007)ADSGoogle Scholar
  3. 3.
    P.B. Hillyard, D.A. Reis, K.J. Gaffney, Phys. Rev. B 77, 195213 (2008)ADSGoogle Scholar
  4. 4.
    P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 77, 3149–3152 (1996)ADSGoogle Scholar
  5. 5.
    J.S. Graves, R.E. Allen, Phys. Rev. B 58, 13627 (1998)ADSGoogle Scholar
  6. 6.
    H.O. Jeschke, M.E. Garcia, in Chapter 7 Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays, ed. by B.W. Adams (Springer, New York, 2003), pp. 175–214Google Scholar
  7. 7.
    T. Dumitrica, A. Burzo, Y. Dou, R.E. Allen, Phys. Status Solidi B 241, 2331–2342 (2004)ADSGoogle Scholar
  8. 8.
    H.O. Jeschke, M.S. Diakhate, M.E. Garcia, Appl. Phys. A 96, 33–42 (2009)ADSGoogle Scholar
  9. 9.
    B.R. Torralva, R.E. Allen, J. Mod. Opt. 49, 593–625 (2002)ADSGoogle Scholar
  10. 10.
    Y. Dou, B.R. Torralva, R.E. Allen, Chem. Phys. Lett. 392, 352–357 (2004)ADSGoogle Scholar
  11. 11.
    H.O. Jeschke, M.E. Garcia, M. Lenzner, J. Bonse, J. Krüger, W. Kautek, Appl. Surf. Sci. 197–198, 839–844 (2002)Google Scholar
  12. 12.
    Z. Lin, R.E. Allen, J. Phys.: Condens. Matter 21, 485503 (2009)Google Scholar
  13. 13.
    A.J. Neukirch, Z.Y. Guo, O.V. Prezhdo, J. Phys. Chem. C 116, 15034–15040 (2012)Google Scholar
  14. 14.
    R.K. Singh, J. Narayan, Phys. Rev. B 41, 8843–8858 (1990)ADSGoogle Scholar
  15. 15.
    A. Peterlongo, A. Miotello, R. Kelly, Phys. Rev. E 50, 4716–4727 (1994)ADSGoogle Scholar
  16. 16.
    J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, J. Appl. Phys. 78, 4696–4709 (1995)ADSGoogle Scholar
  17. 17.
    X. Xu, G. Chen, K.H. Song, Int. J. Heat Mass Transfer 42, 1371–1382 (1999)Google Scholar
  18. 18.
    V.A. Gnatyuk, T. Aoki, O.S. Gorodnychenko, Y. Hatanaka, Appl. Phys. Lett. 83, 3704–3706 (2003)ADSGoogle Scholar
  19. 19.
    I.H. Chowdhury, X. Xu, Num. Heat Transfer A 44, 219–232 (2003)ADSGoogle Scholar
  20. 20.
    A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, Spectrochim. Acta B 58, 1867–1893 (2003)ADSGoogle Scholar
  21. 21.
    N. Bityurin, B.S. Luk’yanchuk, M.H. Hong, T.C. Chong, Chem. Rev. 103, 519–552 (2003)Google Scholar
  22. 22.
    K.N. Vonatsos, D.I. Pantelis, Appl. Phys. A 80, 885–889 (2005)ADSGoogle Scholar
  23. 23.
    O.A. Bulgakova, N.M. Bulgakova, V.P. Zhukov, Appl. Phys. A 101, 53–59 (2010)ADSGoogle Scholar
  24. 24.
    N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, in Chapter 4 in Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties, vol. 130, Springer Series in Materials Science, ed. by A. Miotello, P.M. Ossi (Springer, New York, 2010), pp. 81–97Google Scholar
  25. 25.
    K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Huller, Phys. Rev. E 62, 1202–1214 (2000)ADSGoogle Scholar
  26. 26.
    Y. Kondoh, T. Yabe, J. Maehara, T. Nakamura, Y. Ogata, Phys. Rev. E 68, 066408 (2003)ADSGoogle Scholar
  27. 27.
    F. Vidal, T.W. Johnston, J.-C. Kieffer, F. Martin, Phys. Rev. B 70, 184125 (2004)ADSGoogle Scholar
  28. 28.
    J.P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, E. Audouard, Phys. Rev. B 71, 165406 (2005)ADSGoogle Scholar
  29. 29.
    M.E. Povarnitsyn, T.E. Itina, M. Sentis, K.V. Khishchenko, P.R. Levashov, Phys. Rev. B 75, 235414 (2007)ADSGoogle Scholar
  30. 30.
    A.N. Volkov, L.V. Zhigilei, J. Phys.: Conf. Ser. 59, 640–645 (2007)ADSGoogle Scholar
  31. 31.
    A.N. Volkov, C. Sevilla, L.V. Zhigilei, Appl. Surf. Sci. 253, 6394–6399 (2007)ADSGoogle Scholar
  32. 32.
    M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Phys. Rev. Lett. 103, 195002 (2009)ADSGoogle Scholar
  33. 33.
    J.P. Colombier, P. Combis, E. Audouard, R. Stoian, New J. Phys. 14, 013039 (2012)ADSGoogle Scholar
  34. 34.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987, 1990)Google Scholar
  35. 35.
    D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications (Academic Press, San Diego, 1996)zbMATHGoogle Scholar
  36. 36.
    L.V. Zhigilei, Z. Lin, D.S. Ivanov, E. Leveugle, D.H. Duff, D. Thomas, C. Sevilla, S.J. Guy, in Chapter 3 in Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties, vol. 130, Springer Series in Materials Science, ed. by A. Miotello, P.M. Ossi (Springer, New York, 2010), pp. 43–79Google Scholar
  37. 37.
    C.F. Richardson, P. Clancy, Mol. Sim. 7, 335–355 (1991)Google Scholar
  38. 38.
    H. Hakkinen, U. Landman, Phys. Rev. Lett. 71, 1023–1026 (1993)ADSGoogle Scholar
  39. 39.
    X. Wang, X. Xu, J. Heat Transfer 124, 265–274 (2002)Google Scholar
  40. 40.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)ADSGoogle Scholar
  41. 41.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. Lett. 91, 105701 (2003)ADSGoogle Scholar
  42. 42.
    D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 977–981 (2004)ADSGoogle Scholar
  43. 43.
    X. Wang, Y. Lu, J. Appl. Phys. 98, 114304 (2005)ADSGoogle Scholar
  44. 44.
    Z. Lin, L.V. Zhigilei, Phys. Rev. B 73, 184113 (2006)ADSGoogle Scholar
  45. 45.
    L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892–11906 (2009)Google Scholar
  46. 46.
    D.A. Thomas, Z. Lin, L.V. Zhigilei, E.L. Gurevich, S. Kittel, R. Hergenröder, Appl. Surf. Sci. 255, 9605–9612 (2009)ADSGoogle Scholar
  47. 47.
    Z. Lin, E.M. Bringa, E. Leveugle, L.V. Zhigilei, J. Phys. Chem. C 114, 5686–5699 (2010)Google Scholar
  48. 48.
    E.T. Karim, Z. Lin, L.V. Zhigilei, AIP Conf. Proc. 1464, 280–293 (2012)ADSGoogle Scholar
  49. 49.
    Z. Lin, R.A. Johnson, L.V. Zhigilei, Phys. Rev. B 77, 214108 (2008)ADSGoogle Scholar
  50. 50.
    D.S. Ivanov, Z. Lin, B. Rethfeld, G.M. O’Connor, T.J. Glynn, L.V. Zhigilei, J. Appl. Phys. 107, 013519 (2010)ADSGoogle Scholar
  51. 51.
    C. Wu, D.A. Thomas, Z. Lin, L.V. Zhigilei, Appl. Phys. A 104, 781–792 (2011)ADSGoogle Scholar
  52. 52.
    L.V. Zhigilei, B.J. Garrison, J. Appl. Phys. 88, 1281–1298 (2000)ADSGoogle Scholar
  53. 53.
    A.G. Zhidkov, L.V. Zhigilei, A. Sasaki, T. Tajima, Appl. Phys. A 73, 741–747 (2001)ADSGoogle Scholar
  54. 54.
    S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, A M. Oparin, Yu.V. Petrov, Pis’ma Zh. Eksp. Teor. Fiz. 77, 731 (2003) [JETP Lett. 77, 606–610 (2003)]Google Scholar
  55. 55.
    E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 1643–1655 (2004)ADSGoogle Scholar
  56. 56.
    A.K. Upadhyay, H.M. Urbassek, J. Phys. D 38, 2933–2941 (2005)ADSGoogle Scholar
  57. 57.
    H.Y. Lai, P.H. Huang, Appl. Surf. Sci. 254, 3067–3073 (2008)ADSGoogle Scholar
  58. 58.
    B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, Phys. Rev. B 82, 064113 (2010)ADSGoogle Scholar
  59. 59.
    E. Ohmura, I. Fukumoto, Int. J. Japan Soc. Prec. Eng. 30, 128–133 (1996)Google Scholar
  60. 60.
    L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, J. Phys. Chem. B 101, 2028–2037 (1997)Google Scholar
  61. 61.
    L.V. Zhigilei, B.J. Garrison, Appl. Phys. Lett. 71, 551–553 (1997)ADSGoogle Scholar
  62. 62.
    L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, Chem. Phys. Lett. 276, 269–273 (1997)ADSGoogle Scholar
  63. 63.
    E. Ohmura, I. Fukumoto, I. Miyamoto, Int. J. Japan Soc. Prec. Eng. 32, 248–253 (1998)Google Scholar
  64. 64.
    R.F.W. Herrmann, J. Gerlach, E.E.B. Campbell, Appl. Phys. A 66, 35–42 (1998)ADSGoogle Scholar
  65. 65.
    X. Wu, M. Sadeghi, A. Vertes, J. Phys. Chem. B 102, 4770–4778 (1998)Google Scholar
  66. 66.
    L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, J. Phys. Chem. B 102, 2845–2853 (1998)Google Scholar
  67. 67.
    L.V. Zhigilei, B.J. Garrison, Rapid Commun. Mass Spectrom. 12, 1273–1277 (1998)Google Scholar
  68. 68.
    L.V. Zhigilei, B.J. Garrison, Appl. Phys. Lett. 74, 1341–1343 (1999)ADSGoogle Scholar
  69. 69.
    L.V. Zhigilei, B.J. Garrison, Appl. Phys. A 69, S75–S80 (1999)ADSGoogle Scholar
  70. 70.
    Y.G. Yingling, L.V. Zhigilei, B.J. Garrison, J. Photochem. Photobiol. A 145, 173–181 (2001)Google Scholar
  71. 71.
    S. Kristyan, A. Bensura, A. Vertes, Theor. Chem. Acc. 107, 319–325 (2002)Google Scholar
  72. 72.
    T.E. Itina, L.V. Zhigilei, B.J. Garrison, J. Phys. Chem. B 106, 303–310 (2002)Google Scholar
  73. 73.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Phys. Rev. B 66, 115404 (2002)ADSGoogle Scholar
  74. 74.
    L.V. Zhigilei, Appl. Phys. A 76, 339–350 (2003)ADSGoogle Scholar
  75. 75.
    L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman, Chem. Rev. 103, 321–347 (2003)Google Scholar
  76. 76.
    P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. Lett. 91, 225502 (2003)ADSGoogle Scholar
  77. 77.
    N.N. Nedialkov, P.A. Atanasov, S.E. Imamova, A. Ruf, P. Berger, F. Dausinger, Appl. Phys. A 79, 1121–1125 (2004)ADSGoogle Scholar
  78. 78.
    X. Xu, C. Cheng, I.H. Chowdhury, ASME Trans. J. Heat Transfer 126, 727–734 (2004)Google Scholar
  79. 79.
    C. Cheng, X. Xu, Phys. Rev. B 72, 165415 (2005)ADSGoogle Scholar
  80. 80.
    X.W. Wang, J. Phys. D 38, 1805–1823 (2005)ADSGoogle Scholar
  81. 81.
    Y.G. Yingling, B.J. Garrison, J. Phys. Chem. B 109, 16482–16489 (2005)Google Scholar
  82. 82.
    P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. B 73, 134108 (2006)ADSGoogle Scholar
  83. 83.
    N.N. Nedialkov, P.A. Atanasov, Appl. Surf. Sci. 252, 4411–4415 (2006)ADSGoogle Scholar
  84. 84.
    S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, YuV Petrov, V.A. Khokhlov, J. Exp. Theor. Phys. 103, 183–197 (2006)ADSGoogle Scholar
  85. 85.
    M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, YuV Petrov, V.E. Fortov, V.A. Khokhlov, Appl. Surf. Sci. 253, 6276–6282 (2007)ADSGoogle Scholar
  86. 86.
    E. Leveugle, L.V. Zhigilei, J. Appl. Phys. 102, 074914 (2007)ADSGoogle Scholar
  87. 87.
    E. Leveugle, A. Sellinger, J.M. Fitz-Gerald, L.V. Zhigilei, Phys. Rev. Lett. 98, 216101 (2007)ADSGoogle Scholar
  88. 88.
    M. Prasad, P. Conforti, B.J. Garrison, J. Appl. Phys. 101, 103113 (2007)ADSGoogle Scholar
  89. 89.
    L. Zhang, X. Wang, Appl. Surf. Sci. 255, 3097–3103 (2008)ADSGoogle Scholar
  90. 90.
    M. Gill-Comeau, L.J. Lewis, Phys. Rev. B 84, 224110 (2011)ADSGoogle Scholar
  91. 91.
    X. Li, L. Jiang, Appl. Phys. A 109, 367–376 (2012)ADSGoogle Scholar
  92. 92.
    B.J. Garrison, D. Srivastava, Annu. Rev. Phys. Chem. 46, 373–394 (1995)ADSGoogle Scholar
  93. 93.
    A.F. Voter, MRS Bull. 21, 17–18 (1996)Google Scholar
  94. 94.
    S.B. Sinnott, D.W. Brenner, MRS Bull. 37, 469–473 (2012)Google Scholar
  95. 95.
    S.L. Johnson, M.R. Papantonakis, R.F. Haglund, in Chapter 8 in Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties, vol. 130, Springer Series in Materials Science, ed. by A. Miotello, P.M. Ossi (Springer, New York, 2010), pp. 177–202Google Scholar
  96. 96.
    R.E. Wyatt, C. Iung, C. Leforestier, Acc. Chem. Res. 28, 423–429 (1995)Google Scholar
  97. 97.
    V. Kozich, W. Werncke, J. Dreyer, K.-W. Brzezinka, M. Rini, A. Kummrow, T. Elsaesser, J. Chem. Phys. 117, 719–726 (2002)ADSGoogle Scholar
  98. 98.
    H. Kim, D.D. Dlott, Y. Won, J. Chem. Phys. 102, 5480–5485 (1995)ADSGoogle Scholar
  99. 99.
    J.C. Deàk, L.K. Iwaki, S.T. Rhea, D.D. Dlott, J. Raman Spectr. 31, 263–274 (2000)ADSGoogle Scholar
  100. 100.
    E.L. Sibert, R. Rey, J. Chem. Phys. 116, 237–257 (2002)ADSGoogle Scholar
  101. 101.
    M. Sadeghi, X. Wu, A. Vertes, J. Phys. Chem. B 105, 2578–2587 (2001)Google Scholar
  102. 102.
    Ł. Dutkiewicz, R.E. Johnson, A. Vertes, R. Pędrys, J. Phys. Chem. A 103, 2925–2933 (1999)Google Scholar
  103. 103.
    E. Leveugle, L.V. Zhigilei, A. Sellinger, J.M. Fitz-Gerald, Appl. Surf. Sci. 253, 6456–6460 (2007)ADSGoogle Scholar
  104. 104.
    A. Sellinger, E. Leveugle, J.M. Fitz-Gerald, L.V. Zhigilei, Appl. Phys. A 92, 821–829 (2008)ADSGoogle Scholar
  105. 105.
    R. Knochenmuss, L.V. Zhigilei, J. Phys. Chem. B 109, 22947–22957 (2005)Google Scholar
  106. 106.
    R. Knochenmuss, L.V. Zhigilei, J. Mass Spectrom. 45, 333–346 (2010)Google Scholar
  107. 107.
    R. Knochenmuss, L.V. Zhigilei, Anal. Bioanal. Chem. 402, 2511–2519 (2012)Google Scholar
  108. 108.
    B.J. Garrison, R. Srinivasan, J. Appl. Phys. 57, 2909–2914 (1985)ADSGoogle Scholar
  109. 109.
    B.J. Garrison, R. Srinivasan, Appl. Phys. Lett. 44, 849–851 (1984)ADSGoogle Scholar
  110. 110.
    Y.G. Yingling, B.J. Garrison, J. Phys. Chem. B 108, 1815–1821 (2004)Google Scholar
  111. 111.
    Y. Dou, L.V. Zhigilei, N. Winograd, B.J. Garrison, J. Phys. Chem. A 105, 2748–2755 (2001)Google Scholar
  112. 112.
    Y. Dou, L.V. Zhigilei, Z. Postawa, N. Winograd, B.J. Garrison, Nucl. Instr. Meth. B 180, 105–111 (2001)ADSGoogle Scholar
  113. 113.
    Y. Dou, N. Winograd, B.J. Garrison, L.V. Zhigilei, J. Phys. Chem. B 107, 2362–2365 (2003)Google Scholar
  114. 114.
    K.M. Smith, M.Y. Hussaini, L.D. Gelb, S.D. Allen, Appl. Phys. A 77, 877–882 (2003)ADSGoogle Scholar
  115. 115.
    X. Gu, H.M. Urbassek, Appl. Phys. B 81, 675–679 (2005)ADSGoogle Scholar
  116. 116.
    X. Gu, H.M. Urbassek, Appl. Surf. Sci. 253, 4142–4149 (2007)ADSGoogle Scholar
  117. 117.
    O. Stein, Z. Lin, L.V. Zhigilei, M. Asscher, J. Phys. Chem. A 115, 6250–6259 (2011)Google Scholar
  118. 118.
    Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)ADSGoogle Scholar
  119. 119.
    F. Gao, D.J. Bacon, P.E.J. Flewitt, T.A. Lewis, Modelling Simul. Mater. Sci. Eng. 6, 543–556 (1998)ADSGoogle Scholar
  120. 120.
    D.M. Duffy, A.M. Rutherford, T. Phys. Cond. Matter 19, 016207 (2007)ADSGoogle Scholar
  121. 121.
    J.D. Schall, C.W. Padgett, D.W. Brenner, Mol. Simulat. 31, 283–288 (2005)Google Scholar
  122. 122.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Sov. Phys. JETP 39, 375–377 (1974)ADSGoogle Scholar
  123. 123.
    R. Holenstein, S.E. Kirkwood, Y.Y. Tsui, R. Fedosejevs, Proc. SPIE 5579, 688–695 (2004)ADSGoogle Scholar
  124. 124.
    Y. Wang, X. Xu, L. Zheng, Appl. Phys. A 92, 849–852 (2008)ADSGoogle Scholar
  125. 125.
    Y. Cherednikov, N.A. Inogamov, H.M. Urbassek, J. Opt. Soc. Am. B 28, 1817–1824 (2011)Google Scholar
  126. 126.
    S. Williamson, G. Mourou, J.C.M. Li, Phys. Rev. Lett. 52, 2364–2367 (1984)ADSGoogle Scholar
  127. 127.
    M.B. Agranat, S.I. Ashitkov, V.E. Fortov, A.V. Kirillin, A.V. Kostanovskii, S.I. Anisimov, P.S. Kondratenko, Appl. Phys. A Mater. Sci. Process. 69, 637–640 (1999)ADSGoogle Scholar
  128. 128.
    B. Lin, H.E. Elsayed-Ali, Surf. Sci. 498, 275–284 (2002)ADSGoogle Scholar
  129. 129.
    B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, Science 302, 1382–1385 (2003)ADSGoogle Scholar
  130. 130.
    K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevich, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, D. von der Linde, Nature (London) 422, 287–289 (2003)ADSGoogle Scholar
  131. 131.
    J.R. Dwyer, C.T. Hebeisen, R. Ernstorfer, M. Harb, V. Deyirmenjian, R.E. Jordan, R.J.D. Miller, Phil. Trans. R. Soc. A 364, 741–778 (2006)ADSGoogle Scholar
  132. 132.
    J.R. Dwyer, R.E. Jordan, C.T. Hebeisen, M. Harb, R. Ernstorfer, T. Dartigalongue, R.J.D. Miller, J. Mod. Optics 54, 905–922 (2007)ADSzbMATHGoogle Scholar
  133. 133.
    C.Y. Ruan, Y. Murooka, R.K. Raman, R.A. Murdick, Nano Lett. 7, 1290–1296 (2007)ADSGoogle Scholar
  134. 134.
    W.L. Chan, R.S. Averback, D.G. Cahill, A. Lagoutchev, Phys. Rev. B 78, 214107 (2008)ADSGoogle Scholar
  135. 135.
    R. Ernstorfer, M. Harb, C.T. Hebeisen, G. Sciaini, T. Dartigalongue, R.J.D. Miller, Science 323, 1033–1037 (2009)ADSGoogle Scholar
  136. 136.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. Lett. 98, 195701 (2007)ADSGoogle Scholar
  137. 137.
    D.Y. Sun, M. Asta, J.J. Hoyt, Phys. Rev. B 69, 024108 (2004)ADSGoogle Scholar
  138. 138.
    F. Celestini, J.-M. Debierre, Phys. Rev. E 65, 041605 (2002)ADSGoogle Scholar
  139. 139.
    S.-N. Luo, T.J. Ahrens, T. Çağın, A. Strachan, W.A. Goddard III, D.C. Swift, Phys. Rev. B 68, 134206 (2003)ADSGoogle Scholar
  140. 140.
    A.B. Belonoshko, N.V. Skorodumova, A. Rosengren, B. Johansson, Phys. Rev. B 73, 012201 (2006)ADSGoogle Scholar
  141. 141.
    A. Vogel, V. Venugopalan, Chem. Rev. 103, 577–644 (2003)Google Scholar
  142. 142.
    G. Paltauf, P.E. Dyer, Chem. Rev. 103, 487–518 (2003)Google Scholar
  143. 143.
    I. Itzkan, D. Albagli, M.L. Dark, L.T. Perelman, C. von Rosenberg, M.S. Feld, Proc. Natl. Acad. Sci. U.S.A. 92, 1960–1964 (1995)ADSGoogle Scholar
  144. 144.
    A.A. Oraevsky, S.L. Jacques, F.K. Tittel, J. Appl. Phys. 78, 1281–1290 (1995)ADSGoogle Scholar
  145. 145.
    R. Cramer, R.F. Haglund, F. Hillenkamp, Int. J. Mass Spectrom. Ion Processes 169/170, 51–67 (1997)ADSGoogle Scholar
  146. 146.
    W.H. Duff, L.V. Zhigilei, J. Phys.: Conf. Ser. 59, 413–417 (2007)ADSGoogle Scholar
  147. 147.
    S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, Yu. V. Petrov, Appl. Surf. Sci. 253, 6390–6393 (2007)ADSGoogle Scholar
  148. 148.
    V. Vitek, Philos. Mag. 21, 1275–1278 (1970)ADSGoogle Scholar
  149. 149.
    D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, Appl. Surf. Sci. 150, 101–106 (1999)ADSGoogle Scholar
  150. 150.
    P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, Appl. Surf. Sci. 233, 275–287 (2004)ADSGoogle Scholar
  151. 151.
    S.E. Kirkwood, A.C. van Popta, Y.Y. Tsui, R. Fedosejevs, Appl. Phys. A 81, 729–735 (2005)ADSGoogle Scholar
  152. 152.
    J. Krüger, D. Dufft, R. Koter, A. Hertwig, Appl. Surf. Sci. 253, 7815–7819 (2007)ADSGoogle Scholar
  153. 153.
    G. Raciukaitis, M. Brikas, P. Gecys, M. Gedvilas, Proc. SPIE 7005, 70052L (2008)Google Scholar
  154. 154.
    L.V. Zhigilei, B.J. Garrison, Mat. Res. Soc. Symp. Proc. 538, 491–496 (1999)Google Scholar
  155. 155.
    C. Schafer, H.M. Urbassek, L.V. Zhigilei, B.J. Garrison, Comp. Mater. Sci. 24, 421–429 (2002)Google Scholar
  156. 156.
    L.V. Zhigilei, D.S. Ivanov, E. Leveugle, B. Sadigh, E.M. Bringa, in High-Power Laser Ablation V, ed. by C.R. Phipps. Proceedings of SPIE, vol. 5448, pp. 505–519 (2004)Google Scholar
  157. 157.
    D. Perez, L.J. Lewis, Phys. Rev. B 67, 184102 (2003)ADSGoogle Scholar
  158. 158.
    J.-M. Savolainen, M.S. Christensen, P. Balling, Phys. Rev. B 84, 193410 (2011)ADSGoogle Scholar
  159. 159.
    A.Y. Vorobyev, C. Guo, Phys. Rev. B 72, 195422 (2005)ADSGoogle Scholar
  160. 160.
    A.Y. Vorobyev, C. Guo, Appl. Phys. A 86, 321–324 (2007)ADSGoogle Scholar
  161. 161.
    Q.-Z. Zhao, S. Malzer, L.-J. Wang, Opt. Express 15, 15741–15746 (2007)ADSGoogle Scholar
  162. 162.
    Y. Dai, M. He, H. Bian, B. Lu, X. Yan, G. Ma, Appl. Phys. A 106, 567–574 (2012)ADSGoogle Scholar
  163. 163.
    K.H. Song, X. Xu, Appl. Surf. Sci. 127–129, 111–116 (1998)Google Scholar
  164. 164.
    J.H. Yoo, S.H. Jeong, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 76, 783–785 (2000)ADSGoogle Scholar
  165. 165.
    C. Porneala, D.A. Willis, Appl. Phys. Lett. 89, 211121 (2006)ADSGoogle Scholar
  166. 166.
    N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199–208 (2001)ADSGoogle Scholar
  167. 167.
    M.M. Martynyuk, Sov. Phys. Tech. Phys. 21, 430–433 (1976)Google Scholar
  168. 168.
    A. Miotello, R. Kelly, Appl. Phys. A 69, S67–S73 (1999)ADSGoogle Scholar
  169. 169.
    R. Kelly, A. Miotello, J. Appl. Phys. 87, 3177–3179 (2000)ADSGoogle Scholar
  170. 170.
    B.J. Garrison, T.E. Itina, L.V. Zhigilei, Phys. Rev. E 68, 041501 (2003)ADSGoogle Scholar
  171. 171.
    L.V. Zhigilei, A.N. Volkov, E. Leveugle, M. Tabetah, Appl. Phys. A 105, 529–546 (2011)ADSGoogle Scholar
  172. 172.
    L.V. Zhigilei, Mat. Res. Soc. Symp. Proc. 677, AA2.1.1–AA2.1.11 (2001)Google Scholar
  173. 173.
    S. Noël, J. Hermann, T. Itina, Appl. Surf. Sci. 253, 6310–6315 (2007)ADSGoogle Scholar
  174. 174.
    T.E. Itina, K. Gouriet, L.V. Zhigilei, S. Noël, J. Hermann, M. Sentis, Appl. Surf. Sci. 253, 7656–7661 (2007)ADSGoogle Scholar
  175. 175.
    S. Amoruso, R. Bruzzese, C. Pagano, X. Wang, Appl. Phys. A 89, 1017–1024 (2007)ADSGoogle Scholar
  176. 176.
    O. Albert, S. Roger, Y. Glinec, J.C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perriere, E. Millon, Appl. Phys. A 76, 319–323 (2003)ADSGoogle Scholar
  177. 177.
    N. Jegenyes, J. Etchepare, B. Reynier, D. Scuderi, A. Dos-Santos, Z. Tóth, Appl. Phys. A 91, 385–392 (2008)ADSGoogle Scholar
  178. 178.
    D. Scuderi, R. Benzerga, O. Albert, B. Reynier, J. Etchepare, Appl. Surf. Sci. 252, 4360–4363 (2006)ADSGoogle Scholar
  179. 179.
    I. Apitz, A. Vogel, Appl. Phys. A 81, 329–338 (2005)ADSGoogle Scholar
  180. 180.
    A. Vogel, I. Apitz, V. Venugopalan, in Oscillations, Waves and Interactions, ed. by T. Kurz, U. Parlitz, U. Kaatze (Universitätsverlag Göttingen, Göttingen, 2007), pp. 217–258Google Scholar
  181. 181.
    E.B. Mpemba, D.G. Osborne, Phys. Educ. 4, 172–175 (1969)ADSGoogle Scholar
  182. 182.
    A. Piqué, R.A. McGill, D.B. Chrisey, D. Leonhardt, T.E. Mslna, B.J. Spargo, J.H. Callahan, R.W. Vachet, R. Chung, M.A. Bucaro, Thin Solid Films 355/356, 536–541 (1999)Google Scholar
  183. 183.
    D.B. Chrisey, A. Piqué, R.A. McGill, J.S. Horwitz, B.R. Ringeisen, D.M. Bubb, P.K. Wu, Chem. Rev. 103, 553–576 (2003)Google Scholar
  184. 184.
    D.M. Bubb, P.K. Wu, J.S. Horwitz, J.H. Callahan, M. Galicia, A. Vertes, R.A. McGill, E.J. Houser, B.R. Ringeisen, D.B. Chrisey, J. Appl. Phys. 91, 2055–2058 (2002)ADSGoogle Scholar
  185. 185.
    K. Rodrigo, P. Czuba, B. Toftmann, J. Schou, R. Pedrys, Appl. Surf. Sci. 252, 4824–4828 (2006)ADSGoogle Scholar
  186. 186.
    A.T. Sellinger, E.M. Leveugle, K. Gogick, L.V. Zhigilei, J.M. Fitz-Gerald, J. Vac. Sci. Technol. A 24, 1618–1622 (2006)Google Scholar
  187. 187.
    R. Pate, A.D. Stiff-Roberts, Chem. Phys. Lett. 477, 406–410 (2009)ADSGoogle Scholar
  188. 188.
    A.P. Caricato, M. Anni, M.G. Manera, M. Martino, R. Rella, F. Romano, T. Tunno, D. Valerini, Appl. Surf. Sci. 255, 9659–9664 (2009)ADSGoogle Scholar
  189. 189.
    A.P. Caricato, G. Leggieri, M. Martino, A. Vantaggiato, D. Valerini, A. Cretì, M. Lomascolo, M.G. Manera, R. Rella, M. Anni, Appl. Phys. A 101, 759–764 (2010)ADSGoogle Scholar
  190. 190.
    D.M. Bubb, J. Corgan, S.Y. Yi, M. Khan, L. Hughes, U. Gurudas, M. Papantonakis, R.A. McGill, Appl. Phys. A 100, 523–531 (2010)ADSGoogle Scholar
  191. 191.
    S. Guha, D. Adil, N.B. Ukah, R.K. Gupta, K. Ghosh, Appl. Phys. A 105, 547–554 (2011)ADSGoogle Scholar
  192. 192.
    Y. Guo, A. Morozov, D. Schneider, J.W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C.B. Arnold, R.D. Priestley, Nature Mater. 11, 337–343 (2012)ADSGoogle Scholar
  193. 193.
    K.B. Shepard, Y. Guo, C.B. Arnold, R.D. Priestley, Appl. Phys. A 110, 771–777 (2013)ADSGoogle Scholar
  194. 194.
    L.V. Zhigilei, C. Wei, D. Srivastava, Phys. Rev. B 71, 165417 (2005)ADSGoogle Scholar
  195. 195.
    A.N. Volkov, L.V. Zhigilei, J. Phys. Chem. C 114, 5513–5531 (2010)Google Scholar
  196. 196.
    A.N. Volkov, L.V. Zhigilei, ACS Nano 4, 6187–6195 (2010)Google Scholar
  197. 197.
    A.T. Sellinger, A.H. Martin, J.M. Fitz-Gerald, Thin Solid Films 516, 6033–6040 (2008)ADSGoogle Scholar
  198. 198.
    Á.P. del Pino, E. György, L. Cabana, B. Ballesteros, G. Tobias, Carbon 50, 4450–4458 (2012)Google Scholar
  199. 199.
    Animated sequences of snapshots from MD simulations of laser melting, spallation, and ablation can be found at http://www.faculty.virginia.edu/CompMat/Resources.html
  200. 200.
    L.A. Falkovsky, E.G. Mishchenko, J. Exp. Theor. Phys. 88, 84–88 (1999)ADSGoogle Scholar
  201. 201.
    Y. Gan, J.K. Chen, Appl. Phys. Lett. 94, 201116 (2009)ADSGoogle Scholar
  202. 202.
    Y. Gan, J.K. Chen, J. Appl. Phys. 108, 103102 (2010)ADSGoogle Scholar
  203. 203.
    G.E. Norman, S.V. Starikov, V.V. Stegailov, J. Exp. Theor. Phys. 114, 792–800 (2012)ADSGoogle Scholar
  204. 204.
    G. Norman, S. Starikov, V. Stegailov, V. Fortov, I. Skobelev, T. Pikuz, A. Faenov, S. Tamotsu, Y. Kato, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Ohba, T. Kaihori, Y. Ochi, T. Imazono, Y. Fukuda, M. Kando, T. Kawachi, J. Appl. Phys. 112, 013104 (2012)ADSGoogle Scholar
  205. 205.
    L. Shokeen, P.K. Schelling, Appl. Phys. Lett. 97, 151907 (2010)ADSGoogle Scholar
  206. 206.
    L. Shokeen, P.K. Schelling, J. Appl. Phys. 109, 073503 (2011)ADSGoogle Scholar
  207. 207.
    L. Shokeen, P.K. Schelling, Comput. Mater. Sci. 67, 316–328 (2013)Google Scholar
  208. 208.
    S. Khakshouri, D. Alfè, D.M. Duffy, Phys. Rev. B 78, 224304 (2008)ADSGoogle Scholar
  209. 209.
    Z. Lin, L.V. Zhigilei, Proc. SPIE 6261, 62610U (2006)ADSGoogle Scholar
  210. 210.
    Z. Lin, L.V. Zhigilei, Appl. Surf. Sci. 253, 6295–6300 (2007)ADSGoogle Scholar
  211. 211.
    C. Suárez, W.E. Bron, T. Juhasz, Phys. Rev. Lett. 75, 4536–4539 (1995)ADSGoogle Scholar
  212. 212.
    Z. Chen, V. Sametoglu, Y.Y. Tsui, T. Ao, A. Ng, Phys. Rev. Lett. 108, 165001 (2012)ADSGoogle Scholar
  213. 213.
    B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev. B 65, 214303 (2002)ADSGoogle Scholar
  214. 214.
    W. Wendelen, B.Y. Mueller, D. Autrique, B. Rethfeld, A. Bogaerts, J. Appl. Phys. 111, 113110 (2012)ADSGoogle Scholar
  215. 215.
    N. Medvedev, U. Zastrau, E. Förster, D.O. Gericke, B. Rethfeld, Phys. Rev. Lett. 107, 165003 (2011)ADSGoogle Scholar
  216. 216.
    G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994)Google Scholar
  217. 217.
    H.M. Urbassek, D. Sibold, Phys. Rev. Lett. 70, 1886–1889 (1993)ADSGoogle Scholar
  218. 218.
    O. Ellegaard, J. Schou, H.M. Urbassek, Appl. Phys. A 69, S577–S582 (1999)ADSGoogle Scholar
  219. 219.
    T.E. Itina, J. Appl. Phys. 89, 740–746 (2001)ADSGoogle Scholar
  220. 220.
    T.E. Itina, W. Marine, M. Autric, J. Appl. Phys. 82, 3536–3542 (1997)ADSGoogle Scholar
  221. 221.
    A.A. Morozov, Phys. Fluids 19, 087101 (2007)ADSGoogle Scholar
  222. 222.
    G.A. Lukyanov, Y. Khang, D.V. Leshchev, S.V. Kozyrev, A.N. Volkov, N.Y. Bykov, O.I. Vakulova, Fuller. Nanotub. Car. N 14, 507–512 (2006)Google Scholar
  223. 223.
    T.E. Itina, M. Sentis, W. Marine, Appl. Surf. Sci. 252, 4433–4438 (2006)ADSGoogle Scholar
  224. 224.
    A.N. Volkov, G.M. O’Connor, T.J. Glynn, G.A. Lukyanov, Appl. Phys. A 92, 927–932 (2008)ADSGoogle Scholar
  225. 225.
    A.N. Volkov, L.V. Zhigilei, Appl. Phys. A 110, 537–546 (2013)ADSGoogle Scholar
  226. 226.
    M.I. Zeifman, B.J. Garrison, L.V. Zhigilei, J. Appl. Phys. 92, 2181–2193 (2002)ADSGoogle Scholar
  227. 227.
    M.I. Zeifman, B.J. Garrison, L.V. Zhigilei, Appl. Surf. Sci. 197/198, 27–34 (2002)ADSGoogle Scholar
  228. 228.
    T. E. Itina and L. V. Zhigilei, J. Phys.: Conf. Ser. 59, 44–49 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Chengping Wu
    • 1
  • Eaman T. Karim
    • 1
  • Alexey N. Volkov
    • 1
  • Leonid V. Zhigilei
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations