Incremental Principal Component Analysis-Based Sparse Representation for Face Pose Classification

  • Yuyao Zhang
  • Y. Benhamza
  • Khalid Idrissi
  • Christophe Garcia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8192)


This paper proposes an Adaptive Sparse Representation pose Classification (ASRC) algorithm to deal with face pose estimation in occlusion, bad illumination and low-resolution cases. The proposed approach classifies different poses, the appearance of face images from the same pose being modelled by an online eigenspace which is built via Incremental Principal Component Analysis. Then the combination of the eigenspaces of all pose classes are used as an over-complete dictionary for sparse representation and classification. However, the big amount of training images may lead to build an extremely large dictionary which will decelerate the classification procedure. To avoid this situation, we devise a conditional update method that updates the training eigenspace only with the misclassified face images. Experimental results show that the proposed method is very robust when the illumination condition changes very dynamically and image resolutions are quite poor.


Sparse Representation Pose Classification Incremental Principal Component Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang, T., Tu, J., Xiong, Y.: Calibrating head pose estimation in vidoes for meeting room event analysis. In: IEEE International Conference on Image Processing (ICIP), pp. 3193–3196 (2006)Google Scholar
  2. 2.
    Murphy-Chutorian, E., Trivedi, M.: Head pose estimation for driver assistance systems: A robust algorithm and experimental evaluation. Intelligent Transportation Systems, 709–714 (2007)Google Scholar
  3. 3.
    Ohayon, S., Rivlin, E.: Robust 3d head tracking using camera pose estimation. In: International Conference Pattern Recognation (ICPR), pp. 1063–1066 (2006)Google Scholar
  4. 4.
    Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(4), 607–626 (2009)CrossRefGoogle Scholar
  5. 5.
    Matthews, I., Baker, S.: Active appearance models revisited. International Journal of Computer Vision 60(2), 135–164 (2004)CrossRefGoogle Scholar
  6. 6.
    Moon, H., Miller, M.L.: Estimating facial pose from a sparse representation. In: International Conference on Image Processing (ICIP), pp. 75–78 (2004)Google Scholar
  7. 7.
    Yuan, J., Li, Z., Fu, Y., Huang, T.: Query driven localized linear discriminant models for head pose estimation. In: ICME, pp. 1810–1813 (2007)Google Scholar
  8. 8.
    Jieping, Y., Balasubramanian, V., Panchanathan, S.: Biased manifold embedding: A framework for person-independent head pose estimation. In: Proc. CVPR, pp. 1–7 (2007)Google Scholar
  9. 9.
    De la Torre, F., Huang, D., Storer, M., Bischof, H.: Supervised local subspace learning for continuous head pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–2928 (2011)Google Scholar
  10. 10.
    Su, F., Su, Z., Ji, H., Liu, R., Tian, Y.: Robust head pose estimation via convex regularized sparse regression. In: IEEE International Conference on Image Processing (ICIP), pp. 3617–3620 (2011)Google Scholar
  11. 11.
    Saquib Sarfraz, M., Hellwich, O.: Head pose estimation in face recognition across pose scenarios. In: VISAPP, pp. 235–242 (2008)Google Scholar
  12. 12.
    Benfold, B., Reid, I.: Colour invariant head pose classification in low resolution video. In: Procedings of the British Machine Vision Conference, BMVC (2008)Google Scholar
  13. 13.
    Xiang, T., Orozco, J., Gong, S.: Head pose classification in crowded scenes. In: Procedings of the British Machine Vision Conference (BMVC 2009), pp. 120.1–120.11 (2009)Google Scholar
  14. 14.
    Sarfraz, M.S., Hellwich, O.: Head pose estimation in face recognition across pose scenarios. In: VISAPP (1) 2008, pp. 235–242 (2008)Google Scholar
  15. 15.
    Hall, P.M., Marshall, D., Martin, R.R.: Incremental eigenanalysis for classification. In: British Machine Vision Conference, pp. 286–295 (1998)Google Scholar
  16. 16.
    Arvind Ganesh, S., Sastry, S., Wright, J., Yang, A.Y., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 31(2), 210–227Google Scholar
  17. 17.
    Donoho, D.: For most large underdetermined systems of linear equations: the minimal l1-norm solution is also the sparsest solution. Comm. on Pure and Applied Math. 59(6), 797–829 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Baker, S., Sim, T., Bsat, M.: The cum pose illumination and expression database. IEEE Trans. Pattern Analysis and Machine Intelligence 25(12), 1615–1618 (2003)CrossRefGoogle Scholar
  19. 19.
    Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuyao Zhang
    • 1
  • Y. Benhamza
    • 2
  • Khalid Idrissi
    • 1
  • Christophe Garcia
    • 1
  1. 1.CNRS INSA-Lyon, LIRIS, UMR CNRS 5205University de LyonFrance
  2. 2.Laboratoire LARATICINTTIC Oran AlgrieAlgeria

Personalised recommendations