Skip to main content

An Indoor RGB-D Dataset for the Evaluation of Robot Navigation Algorithms

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8192)

Abstract

The paper presents a RGB-D dataset for development and evaluation of mobile robot navigation systems. The dataset was registered using a WiFiBot robot equipped with a Kinect sensor. Unlike the presently available datasets, the environment was specifically designed for the registration with the Kinect sensor. Moreover, it was ensured that the registered data is synchronized with the ground truth position of the robot. The presented dataset will be made publicly available for research purposes.

Keywords

  • robot navigation
  • SLAM
  • benchmark dataset
  • Kinect
  • RGB-D

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02895-8_64

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-02895-8_29
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-02895-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basler: Installation and setup guide for cameras used with Basler’s Pylon API, 7th edn. (October 2012)

    Google Scholar 

  2. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

  3. Ceriani, S., Fontana, G., Giusti, A., Marzorati, D., Matteucci, M., Migliore, D., Rizzi, D., Sorrenti, D., Taddei, P.: Rawseeds ground truth collection systems for indoor self-localization and mapping. Autonomous Robots 27(4), 353–371 (2009), http://dx.doi.org/10.1007/s10514-009-9156-5

    CrossRef  Google Scholar 

  4. Claus, D., Fitzgibbon, A.W.: A rational function lens distortion model for general cameras. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 213–219. IEEE (2005)

    Google Scholar 

  5. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the “RGB-D” slam system. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 1691–1696 (2012)

    Google Scholar 

  6. G., Huang, S., Hu, L.Z., Alempijevic, A., Dissanayake, G.: A robust “RGB-D SLAM” algorithm. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1714–1719 (2012)

    Google Scholar 

  7. Schmidt, A., Kraft, M., Fularz, M., Domagał a, Z.: The registration system for the evaluation of indoor visual “slam” and odometry algorithms. Journal of Automation, Mobile Robotics & Intelligent Systems 7(2), 46–51 (2013)

    Google Scholar 

  8. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of rgb-d slam systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 573–580 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, A., Fularz, M., Kraft, M., Kasiński, A., Nowicki, M. (2013). An Indoor RGB-D Dataset for the Evaluation of Robot Navigation Algorithms. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2013. Lecture Notes in Computer Science, vol 8192. Springer, Cham. https://doi.org/10.1007/978-3-319-02895-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02895-8_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02894-1

  • Online ISBN: 978-3-319-02895-8

  • eBook Packages: Computer ScienceComputer Science (R0)