Skip to main content

GaP Growth on Si(100) and Anti-phase Disorder

  • Chapter
  • First Online:
GaP Heteroepitaxy on Si(100)

Part of the book series: Springer Theses ((Springer Theses))

  • 348 Accesses

Abstract

The technological interest in the superior electronic and optoelectronic properties of III–V semiconductors promotes the research in heteroepitaxy on silicon (Si) substrates for integration in established micro-electronics. However, major challenges have to be met at the III–V/Si heterojunction: crucial issues are differences in lattice constants and thermal expansion coefficients as well as the formation of the heterovalent (polar-on-non-polar) interface necessitating a suitable substrate preparation prior to heteroepitaxy. New defect mechanisms—typically not observed in III–V homoepitaxy—arise from the interface with the Si(100) substrate and need to be controlled to achieve defect concentrations suitable for applications in advanced optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.F. Fang, K. Adomi, S. Iyer, H. Morkoc, H. Zabel, C. Choi, N. Otsuka, J. Appl. Phys. 68, R31–R58 (1990)

    Article  ADS  Google Scholar 

  2. H. Kroemer, J. Cryst. Growth 81, 193–204 (1987)

    Article  ADS  Google Scholar 

  3. H. Döscher, T. Hannappel, B. Kunert, A. Beyer, K. Volz, W. Stolz, Appl. Phys. Lett. 93, 172110 (2008)

    Article  ADS  Google Scholar 

  4. I. Nemeth, B. Kunert, W. Stolz, K. Volz, J. Cryst. Growth 310, 4763–4767 (2008)

    Article  ADS  Google Scholar 

  5. M. Kawabe, T. Ueda, Jpn. J. Appl. Phys. Part 2: Lett. 26, L944–L946 (1987)

    Google Scholar 

  6. H. Döscher, T. Hannappel, J. Appl. Phys. 107, 123523 (2010)

    Article  ADS  Google Scholar 

  7. P.N. Uppal, H. Kroemer, J. Appl. Phys. 58, 2195–2203 (1985)

    Article  ADS  Google Scholar 

  8. I. Nemeth, B. Kunert, W. Stolz, K. Volz, J. Cryst. Growth 310, 1595–1601 (2008)

    Article  ADS  Google Scholar 

  9. J.M. Zhou, H. Chen, F.H. Li, S. Liu, X.B. Mei, Y. Haung, Vacuum 43, 1055–1057 (1992)

    Article  Google Scholar 

  10. J.P. Gowers, Appl. Phys. Mater. Sci. Process. 34, 231–236 (1984)

    Google Scholar 

  11. L. Töben, T. Hannappel, K. Moller, H.J. Crawack, C. Pettenkofer, F. Willig, Surf. Sci. 494, L755–L760 (2001)

    Article  Google Scholar 

  12. N. Esser, W.G. Schmidt, J. Bernholc, A.M. Frisch, P. Vogt, M. Zorn, M. Pristovsek, W. Richter, F. Bechstedt, T. Hannappel, S. Visbeck, J. Vac. Sci. Technol. B 17, 1691–1696 (1999)

    Article  Google Scholar 

  13. P.H. Hahn, W.G. Schmidt, F. Bechstedt, O. Pulci, R. Del Sole, Phys. Rev. B. 68, 033311 (2003)

    Article  ADS  Google Scholar 

  14. R.A. Wolkow, Phys. Rev. Lett. 68, 2636–2639 (1992)

    Article  ADS  Google Scholar 

  15. H. Döscher, B. Borkenhagen, G. Lilienkamp, W. Daum, T. Hannappel, Surf. Sci. Lett. 605, L38 (2011)

    Article  Google Scholar 

  16. H. Döscher, B. Kunert, A. Beyer, O. Supplie, K. Volz, W. Stolz, T. Hannappel, J. Vac. Sci. Technol. B. 28, C5H1–C5H6 (2010)

    Google Scholar 

  17. H. Döscher, O. Supplie, S. Brückner, T. Hannappel, A. Beyer, J. Ohlmann, K. Volz, J. Cryst. Growth 315, 16–21 (2011)

    Article  ADS  Google Scholar 

  18. O. Supplie, T. Hannappel, M. Pristovsek, H. Döscher, Phys. Rev. B. 86, 035308 (2012)

    Article  ADS  Google Scholar 

  19. T. Yasuda, D.E. Aspnes, D.R. Lee, C.H. Bjorkman, G. Lucovsky, J. Vac. Sci. Technol. A-Vac. Surf. Films 12, 1152–1157 (1994)

    Article  ADS  Google Scholar 

  20. P. Weightman, D.S. Martin, R.J. Cole, T. Farrell, Rep. Prog. Phys. 68, 1251–1341 (2005)

    Article  ADS  Google Scholar 

  21. T. Hannappel, L. Toben, K. Moller, F. Willig, J. Electron. Mater. 30, 1425–1428 (2001)

    Article  ADS  Google Scholar 

  22. B. Kunert, I. Nemeth, S. Reinhard, K. Volz, W. Stolz, Thin Solid Films 517, 140–143 (2008)

    Article  ADS  Google Scholar 

  23. O. Hunderi, J.T. Zettler, K. Haberland, Thin Solid Films 472, 261–269 (2005)

    Article  ADS  Google Scholar 

  24. U. Rossow, D.E. Aspnes, Phys. Status Solidi A-Appl. Res. 177, 157–163 (2000)

    Article  ADS  Google Scholar 

  25. S. Visbeck, T. Hannappel, M. Zorn, J.T. Zettler, F. Willig, Phys. Rev. B. 63 (2001)

    Google Scholar 

  26. D.E. Aspnes, J.P. Harbison, A.A. Studna, L.T. Florez, J. Vac. Sci. Technol. A-Vac. Surf. Films 6, 1327–1332 (1988)

    Article  ADS  Google Scholar 

  27. C.T. Foxon, B.A. Joyce, R.F.C. Farrow, R.M. Griffith, J. Phys. D-Appl. Phys. 7, 2422–2435 (1974)

    Google Scholar 

  28. L.N. Glurdzhi, A.P. Izergin, Z.N. Kopylova, A.D. Remenyuk, Sov. Phys. Semiconductors-Ussr. 7, 305–306 (1973)

    Google Scholar 

  29. S.E. Acosta-Ortiz, A. Lastras-Martínez, Phys. Rev. B. 40, 1426 (1989)

    Article  ADS  Google Scholar 

  30. O. Acher, S.M. Koch, F. Omnes, M. Defour, M. Razeghi, B. Drevillon, J. Appl. Phys. 68, 3564–3577 (1990)

    Article  ADS  Google Scholar 

  31. S. Adachi, J. Appl. Phys. 66, 6030–6040 (1989)

    Article  ADS  Google Scholar 

  32. J.T. Zettler, Prog. Cryst. Growth Charact. Mater. 35, 27–98 (1997)

    Article  Google Scholar 

  33. S. Zollner, M. Garriga, J. Kircher, J. Humlicek, M. Cardona, G. Neuhold, Thin Solid Films 233, 185–188 (1993)

    Article  ADS  Google Scholar 

  34. D.E. Aspnes, A.A. Studna, Phys. Rev. B. 27, 985–1009 (1983)

    Article  ADS  Google Scholar 

  35. A.R. Laracuente, L.J. Whitman, Surf. Sci. 545, 70–84 (2003)

    Article  ADS  Google Scholar 

  36. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, W. Stolz, J. Cryst. Growth (2010) (these proceedings, submitted)

    Google Scholar 

  37. T. Hannappel, S. Visbeck, L. Toben, F. Willig, Rev. Sci. Instrum. 75, 1297–1304 (2004)

    Article  ADS  Google Scholar 

  38. E. Bauer, Rep. Prog. Phys. 57, 895–938 (1994)

    Article  ADS  Google Scholar 

  39. H. Marbach, G. Lilienkamp, H. Wei, S. Gunther, Y. Suchorski, R. Imbihl, Phys. Chem. Chem. Phys. 5, 2730–2735 (2003)

    Article  Google Scholar 

  40. T. Yasuda, Thin Solid Films 313, 544–551 (1998)

    Google Scholar 

  41. D.E. Aspnes, J. Vac. Sci. Technol. B, 3, 1498–1506 (1985)

    Google Scholar 

  42. J.D. McIntyre, D.E. Aspnes, Surf. Sci. 24, 417-& (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Döscher .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Döscher, H. (2013). GaP Growth on Si(100) and Anti-phase Disorder. In: GaP Heteroepitaxy on Si(100). Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-02880-4_5

Download citation

Publish with us

Policies and ethics