Advertisement

FIB Patterning of Stainless Steel for the Development of Nano-structured Stent Surfaces for Cardiovascular Applications

  • Michael SchmidtEmail author
  • Feroze Nazneen
  • Paul Galvin
  • Nikolay Petkov
  • Justin D. Holmes
Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 20)

Abstract

Stent implantation is a percutaneous interventional procedure that mitigates vessel stenosis, providing mechanical support within the artery and as such a very valuable tool in the fight against coronary artery disease. However, stenting causes physical damage to the arterial wall. It is well accepted that a valuable route to reduce in-stent re-stenosis can be based on promoting cell response to nano-structured stainless steel (SS) surfaces such as by patterning nano-pits in SS. In this regard patterning by focused ion beam (FIB) milling offers several advantages for flexible prototyping. On the other hand FIB patterning of polycrystalline metals is greatly influenced by channelling effects and redeposition. Correlative microscopy methods present an opportunity to study such effects comprehensively and derive structure–property understanding that is important for developing improved patterning. In this chapter we present a FIB patterning protocol for nano-structuring features (concaves) ordered in rectangular arrays on pre-polished 316L stainless steel surfaces. An investigation based on correlative microscopy approach of the size, shape and depth of the developed arrays in relation to the crystal orientation of the underlying SS domains is presented. The correlative microscopy protocol is based on cross-correlation of top-view scanning electron microscopy, electron backscattering diffraction, atomic force microscopy and cross-sectional (serial) sectioning. Various FIB tests were performed, aiming at improved productivity by preserving nano-size accuracy of the patterned process. The optimal FIB patterning conditions for achieving reasonably high throughput (patterned rate of about 0.03 mm2/h) and nano-size accuracy in dimensions and shapes of the features are discussed as well.

Keywords

Stents FIB Polycrystalline austenitic medical grade stainless steel 316L substrate Nano-surface patterning with pits Concaves Holes Endothelial cell adhesion Correlative microscopy EBSD SEM AFM Serial FIB–SEM sectioning 

Notes

Acknowledgements

This work was supported through a Starting Investigator Research Grant (09/SIRG/I1621) of the Science Foundation Ireland (SFI), the National Biophotonics and Imaging Platform, Ireland (NBIPI) and the Integrated NanoScience Platform for Ireland (INSPIRE) initiatives funded by the Irish Government’s Programme for Research in Third Level Institutions, Cycle 4, National Development Plan 2007–2013. The authors are grateful to Dr Shanthi Muttukrishna (Department of Obstetrics and Gynaecology, University College Cork) for the gift of the human umbilical vein endothelial vein. Dr Lynette Keeney is gratefully acknowledged for performance of the AFM scans and line profiles for the correlative microscopy part of this chapter. Dr Calum Dickinson is gratefully acknowledged for contributing the EBSD measurements.

References

  1. 1.
    Dugdale, D.C.: Stent, in Medicine Plus, 2012. http://www.nlm.nih.gov/medlineplus/ency/article/002303.htm
  2. 2.
    Balamurugan, A., Rajeswari, S., Balossier, G., Rebelo, A.H.S., Ferreira, J.M.F.: Corrosion aspects of metallic implants—an overview. Mater. Corrosion 59(11), 855–869 (2008)CrossRefGoogle Scholar
  3. 3.
    O’Brien, B., Carroll, W.: The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater. 5(4), 945–958 (2009)CrossRefGoogle Scholar
  4. 4.
    Clerc, C.O., Jedwab, M.R., Mayer, D.W., Thompson, P.J., Stinson, J.S.: Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants. J. Biomed. Mater. Res. 38(3), 229–234 (1997)CrossRefGoogle Scholar
  5. 5.
    Craig, C., Friend, C., Edwards, M., Cornish, L., Gokcen, N.: Mechanical properties and microstructure of platinum enhanced radiopaque stainless steel (PERSS) alloys. J. Alloys Compd. 361(1), 187–199 (2003)CrossRefGoogle Scholar
  6. 6.
    Craig, C., Friend, C., Edwards, M., Gokcen, N.: Tailoring radiopacity of austenitic stainless steel for coronary stents. In: Medical Device Materials: Proceedings from the Materials & Processes for Medical Devices Conference 2003, 8–10 September 2003, Anaheim, California. 2004. American Society for MetalsGoogle Scholar
  7. 7.
    Heublein, B., Rohde, R., Kaese, V., Niemeyer, M., Hartung, W., Haverich, A.: Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89(6), 651–656 (2003)CrossRefGoogle Scholar
  8. 8.
    Lüscher, T.F., Steffel, J., Eberli, F.R., Joner, M., Nakazawa, G., Tanner, F.C., Virmani, R.: Drug-eluting stent and coronary thrombosis biological mechanisms and clinical implications. Circulation 115(8), 1051–1058 (2007)CrossRefGoogle Scholar
  9. 9.
    Daemen, J., Wenaweser, P., Tsuchida, K., Abrecht, L., Vaina, S., Morger, C., Kukreja, N., Jüni, P., Sianos, G., Hellige, G.: Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 369(9562), 667–678 (2007)CrossRefGoogle Scholar
  10. 10.
    Chou, L., Firth, J.D., Uitto, V.-J., Brunette, D.M.: Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J. Cell Sci. 108(4), 1563–1573 (1995)Google Scholar
  11. 11.
    Boyan, B.D., Hummert, T.W., Dean, D.D., Schwartz, Z.: Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17(2), 137–146 (1996)CrossRefGoogle Scholar
  12. 12.
    Craighead, H.G., James, C.D., Turner, A.M.P.: Chemical and topographical patterning for directed cell attachment. Curr. Opin. Solid State Mater. Sci. 5(2–3), 177–184 (2001)CrossRefGoogle Scholar
  13. 13.
    Curtis, A., Wilkinson, C.: Nantotechniques and approaches in biotechnology. Trends Biotechnol. 19(3), 97–101 (2001)CrossRefGoogle Scholar
  14. 14.
    Koegler, P., Clayton, A., Thissen, H., Santos, G.N.C., Kingshott, P.: The influence of nanostructured materials on biointerfacial interactions. Adv. Drug Deliv. Rev. 64(15), 1820–1839 (2012)CrossRefGoogle Scholar
  15. 15.
    Nikkhah, M., Edalat, F., Manoucheri, S., Khademhosseini, A.: Engineering microscale topographies to control the cell–substrate interface. Biomaterials 33(21), 5230–5246 (2012)CrossRefGoogle Scholar
  16. 16.
    Chen, L., Han, D., Jiang, L.: On improving blood compatibility: from bioinspired to synthetic design and fabrication of biointerfacial topography at micro/nano scales. Colloids Surf. B Biointerfaces 85(1), 2–7 (2011)CrossRefGoogle Scholar
  17. 17.
    Gentile, F., Tirinato, L., Battista, E., Causa, F., Liberale, C., di Fabrizio, E.M., Decuzzi, P.: Cells preferentially grow on rough substrates. Biomaterials 31(28), 7205–7212 (2010)CrossRefGoogle Scholar
  18. 18.
    Kasemo, B.: Biological surface science. Surf. Sci. 500(1–3), 656–677 (2002)CrossRefGoogle Scholar
  19. 19.
    Duncan, A.C., Weisbuch, F., Rouais, F., Lazare, S., Baquey, C.: Laser microfabricated model surfaces for controlled cell growth. Biosens. Bioelectron. 17(5), 413–426 (2002)CrossRefGoogle Scholar
  20. 20.
    Berry, C.C., Campbell, G., Spadiccino, A., Robertson, M., Curtis, A.S.G.: The influence of microscale topography on fibroblast attachment and motility. Biomaterials 25(26), 5781–5788 (2004)CrossRefGoogle Scholar
  21. 21.
    Yim, E.K.F., Leong, K.W.: Significance of synthetic nanostructures in dictating cellular response. Nanomedicine 1(1), 10–21 (2005)Google Scholar
  22. 22.
    Falconnet, D., Csucs, G., Grandin, H.M., Textor, T.: Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27(16), 3044–3063 (2006)CrossRefGoogle Scholar
  23. 23.
    Yu, L.M.Y., Leipzig, N.D., Shoichet, M.S.: Promoting neuron adhesion and growth. Mater. Today 11(5), 36–43 (2008)CrossRefGoogle Scholar
  24. 24.
    Roach, P., Parker, T., Gadegaard, N., Alexander, M.R.: Surface strategies for control of neuronal cell adhesion: a review. Surf. Sci. Rep. 65(6), 145–173 (2010)CrossRefGoogle Scholar
  25. 25.
    Nazneen, F., Herzog, G., Arrigan, D.W., Caplice, N., Benvenuto, P., Galvin, P., Thompson, M.: Surface chemical and physical modification in stent technology for the treatment of coronary artery disease. J. Biomed. Mater. Res. B Appl. Biomater. 100, 1989–2014 (2012)CrossRefGoogle Scholar
  26. 26.
    Norman, J.J., Desai, T.A.: Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann. Biomed. Eng. 34(1), 89–101 (2006)CrossRefGoogle Scholar
  27. 27.
    Buzea, C., Beydaghyan, G., Elliott, C., Robbie, K.: Control of power law scaling in the growth of silicon nanocolumn pseudo-regular arrays deposited by glancing angle deposition. Nanotechnology 16(10), 1986 (2005)CrossRefGoogle Scholar
  28. 28.
    Dolatshahi-Pirouz, A., Hovgaard, M.B., Rechendorff, K., Chevallier, J., Foss, M., Besenbacher, F.: Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition. Phys. Rev. B 77(11), 115427 (2008)CrossRefGoogle Scholar
  29. 29.
    Tseng, A.A., Notargiacomo, A.: Nanoscale fabrication by nonconventional approaches. J. Nanosci. Nanotechnol. 5(5), 683–702 (2005)CrossRefGoogle Scholar
  30. 30.
    Sarkar, S., Dadhania, M., Rourke, P., Desai, T.A., Wong, J.Y.: Vascular tissue engineering: microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix. Acta Biomater. 1(1), 93–100 (2005)CrossRefGoogle Scholar
  31. 31.
    Houtchens, G.R., Foster, M.D., Desai, T.A., Morgan, E.F., Wong, J.Y.: Combined effects of microtopography and cyclic strain on vascular smooth muscle cell orientation. J. Biomech. 41(4), 762–769 (2008)CrossRefGoogle Scholar
  32. 32.
    Biela, S.A., Su, Y., Spatz, J.P., Kemkemer, R.: Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano–micro range. Acta Biomater. 5(7), 2460–2466 (2009)CrossRefGoogle Scholar
  33. 33.
    Green, A.M., Jansen, J.A., Van der Waerden, J.P.C.M., Von Recum, A.F.: Fibroblast response to microtextured silicone surfaces: texture orientation into or out of the surface. J. Biomed. Mater. Res. 28(5), 647–653 (1994)CrossRefGoogle Scholar
  34. 34.
    Walboomers, X., Croes, H., Ginsel, L., Jansen, J.: Contact guidance of rat fibroblasts on various implant materials. J. Biomed. Mater. Res. 47(2), 204–212 (1999)CrossRefGoogle Scholar
  35. 35.
    Walboomers, X., Croes, H., Ginsel, L., Jansen, J.: Growth behavior of fibroblasts on microgrooved polystyrene. Biomaterials 19(20), 1861–1868 (1998)CrossRefGoogle Scholar
  36. 36.
    Walboomers, X., Ginsel, L., Jansen, J.: Early spreading events of fibroblasts on microgrooved substrates. J. Biomed. Mater. Res. 51(3), 529–534 (2000)CrossRefGoogle Scholar
  37. 37.
    Walboomers, X., Monaghan, W., Curtis, A., Jansen, J.: Attachment of fibroblasts on smooth and microgrooved polystyrene. J. Biomed. Mater. Res. 46(2), 212–220 (1999)CrossRefGoogle Scholar
  38. 38.
    Loesberg, W.A., te Riet, J., van Delft, F.C., Schön, P., Figdor, C.G., Speller, S., van Loon, J.J., Walboomers, X.F., Jansen, J.A.: The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials 28(27), 3944–3951 (2007)CrossRefGoogle Scholar
  39. 39.
    Dalby, M.J., Gadegaard, N., Riehle, M.O., Wilkinson, C.D.W., Curtis, A.S.G.: Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int. J. Biochem. Cell Biol. 36(10), 2005–2015 (2004)CrossRefGoogle Scholar
  40. 40.
    Dalby, M.J., Gadegaard, N., Wilkinson, C.D.: The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithography. J. Biomed. Mater. Res. A 84(4), 973–979 (2008)CrossRefGoogle Scholar
  41. 41.
    Yim, E.K.F., Reano, R.M., Pang, S.W., Yee, A.F., Chen, C.S., Leong, K.W.: Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26(26), 5405–5413 (2005)CrossRefGoogle Scholar
  42. 42.
    Lee, S.W., Kim, S.Y., Rhyu, I.C., Chung, W.Y., Leesungbok, R., Lee, K.W.: Influence of microgroove dimension on cell behavior of human gingival fibroblasts cultured on titanium substrata. Clin. Oral Implants Res. 20(1), 56–66 (2009)CrossRefGoogle Scholar
  43. 43.
    Ito, T., Okazaki, S.: Pushing the limits of lithography. Nature 406(6799), 1027–1031 (2000)CrossRefGoogle Scholar
  44. 44.
    Chou, S.Y., Krauss, P.R., Renstrom, P.J.: Imprint of sub‐25 nm vias and trenches in polymers. Appl. Phys. Lett. 67(21), 3114–3116 (1995)CrossRefGoogle Scholar
  45. 45.
    Raffa, V., Castrataro, P., Menciassi, A., Dario, P.: Focused Ion Beam as a Scanning Probe: Methods and Applications. Applied Scanning Probe Methods II, pp. 361–412. Springer, New York, NY (2006)CrossRefGoogle Scholar
  46. 46.
    Iordanova, I., Antonov, V., Gurkovsky, S.: Changes of microstructure and mechanical properties of cold-rolled low carbon steel due to its surface treatment by Nd:glass pulsed laser. Surf. Coat. Technol. 153(2–3), 267–275 (2002)CrossRefGoogle Scholar
  47. 47.
    Duncan, A.C., Rouais, F., Lazare, S., Bordenave, L., Baquey, C.: Effect of laser modified surface microtopochemistry on endothelial cell growth. Colloids Surf. B Biointerfaces 54(2), 150–159 (2007)CrossRefGoogle Scholar
  48. 48.
    Kalantar-Zadeh, K., Fry, B.: Nanotechnology Enabled Sensors. Springer, New York, NY (2007)Google Scholar
  49. 49.
    Volkert, C., Minor, A.: Focused ion beam microscopy and micromachining. MRS Bull. 32(5), 389–395 (2007)CrossRefGoogle Scholar
  50. 50.
    Lanyon, Y.H., De Marzi, G., Watson, Y.E., Quinn, A.J., Gleeson, J.P., Redmond, G., Arrigan, D.W.: Fabrication of nanopore array electrodes by focused ion beam milling. Anal. Chem. 79(8), 3048–3055 (2007)CrossRefGoogle Scholar
  51. 51.
    Choi, C.H., Heydarkhan-Hagvall, S., Wu, B.M., Dunn, J.C., Beygui, R.E., Kim, C.J.: Cell growth as a sheet on three‐dimensional sharp‐tip nanostructures. J. Biomed. Mater. Res. A 89(3), 804–817 (2009)CrossRefGoogle Scholar
  52. 52.
    Raffa, V., Vittorio, O., Pensabene, V., Menciassi, A., Dario, P.: FIB-nanostructured surfaces and investigation of bio/nonbio interactions at the nanoscale. IEEE Trans. NanoBiosci. 7(1), 1–10 (2008)CrossRefGoogle Scholar
  53. 53.
    Joshi, K., Singh, P., Verma, S.: Fabrication of platinum nanopillars on peptide-based soft structures using a focused ion beam. Biofabrication 1(2), 025002 (2009)CrossRefGoogle Scholar
  54. 54.
    Choubey, A., Marton, D., Sprague, E.A.: Human aortic endothelial cell response to 316L stainless steel material microstructure. J. Mater. Sci. Mater. Med. 20(10), 2105–2116 (2009)CrossRefGoogle Scholar
  55. 55.
    Misra, R.D., Nune, C., Pesacreta, T.C., Somani, M.C., Karjalainen, L.P.: Understanding the impact of grain structure in austenitic stainless steel from a nanograined regime to a coarse-grained regime on osteoblast functions using a novel metal deformation–annealing sequence. Acta Biomater. 9, 6245–6258 (2013)CrossRefGoogle Scholar
  56. 56.
    Russell, A., Lee, K.L.: Structure-Property Relations in Nonferrous Metals. Wiley-Interscience, New York, NY (2005)CrossRefGoogle Scholar
  57. 57.
    Shi, D.: Introduction to Biomaterials. World Scientific, London (2006)Google Scholar
  58. 58.
    Nazneen, F., Galvin, P., Arrigan, D.W., Thompson, M., Benvenuto, P., Herzog, G.: Electropolishing of medical-grade stainless steel in preparation for surface nano-texturing. J. Solid State Electrochem. 16(4), 1389–1397 (2012)CrossRefGoogle Scholar
  59. 59.
    Dalby, M.J., Berry, C.C., Riehle, M.O., Sutherland, D.S., Agheli, H., Curtis, A.S.G.: Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp. Cell Res. 295(2), 387–394 (2004)CrossRefGoogle Scholar
  60. 60.
    Schmidt, M., Nazneen, F., Georgiev, Y., Herzog, G., Galvin, P., Petkov, N.: FIB patterning of stainless steel for the development of nano-structured stent surfaces for cardiovascular applications. J. Phys. Conf. 371(1), 012065 (2012)CrossRefGoogle Scholar
  61. 61.
    Nazneen, F., Schmidt, M., McLoughlin, E., Petkov, N., Herzog, G., Arrigan, D., Galvin, P.: Nano-texturing of medical-grade 316L stainless steel by focused ion beam for endothelial cell studies. J. Nanosci. Nanotechnol. 13, 5283–5290 (2013)Google Scholar
  62. 62.
    Feitknecht, W.: Über den angriff von krystallen durch kanalstrahlen. Helv. Chim. Acta 7(1), 825–842 (1924)CrossRefGoogle Scholar
  63. 63.
    Wehner, G.K.: Controlled sputtering of metals by low-energy Hg ions. Phys. Rev. 102(3), 690–704 (1956)CrossRefGoogle Scholar
  64. 64.
    Wehner, G.K., Rosenberg, D.: Angular distribution of sputtered material. J. Appl. Phys. 31(1), 177–179 (1960)CrossRefGoogle Scholar
  65. 65.
    Sigmund, P.: Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184(2), 383–416 (1969)CrossRefGoogle Scholar
  66. 66.
    Bean, K.E.: Anisotropic etching of silicon. IEEE Trans. Electron Dev. 25(10), 1185–1193 (1978)CrossRefGoogle Scholar
  67. 67.
    Seidel, H., Csepregi, L., Heuberger, A., Baumgärtel, H.: Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137(11), 3612–3626 (1990)CrossRefGoogle Scholar
  68. 68.
    Schmidt, M., Nazneen, F., Herzog, G., Arrigan, D., Galvin, P., Keeney, L., Petkov, N., Holmes, J.D.: to be submittedGoogle Scholar
  69. 69.
    Schmidt, M., Nazneen, F., Herzog, G., Arrigan, D., Galvin, P., Dickinson, C., de Silva, J.P., Scanlan, D., O’Hara, N., Cross, G.L.W.: Correlative microscopy study of FIB patterned stainless steel surfaces as novel nano-structured stents for cardiovascular applications. MRS Proc 2012. 1466(1)Google Scholar
  70. 70.
    Giannuzzi, L., Stevie, F.: A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197–204 (1999)CrossRefGoogle Scholar
  71. 71.
    Schwartz, A.J., Kumar, M., Adams, B.L., Field, D.P.: Electron Backscatter Diffraction in Materials Science. Springer, New York, NY (2009)CrossRefGoogle Scholar
  72. 72.
    Stark, Y., Fromter, R., Stickler, D., Oepen, H.P.: Sputter yields of single-and polycrystalline metals for application in focused ion beam technology. J. Appl. Phys. 105(1), 013542-1–013542-5 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Michael Schmidt
    • 1
    Email author
  • Feroze Nazneen
    • 2
  • Paul Galvin
    • 2
  • Nikolay Petkov
    • 1
  • Justin D. Holmes
    • 1
  1. 1.Materials Chemistry and Analysis Group (MCAG), Electron Microscopy and Analysis Facility (EMAF)Tyndall National Institute, University College CorkCorkIreland
  2. 2.Life Sciences Interface (LSI) groupTyndall National Institute, University College CorkCorkIreland

Personalised recommendations