Nanostructured Materials Driven by Dielectrophoresis on Nanoelectrodes Patterned by Focused Ion Beam

Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 20)


In this chapter the combined use of focused ion beam and dielectrophoresis is reported to show the powerful tool for realizing nanodevices based on nanostructured materials.

This combination allows to positioning by dielectrophoresis between nanoelectrodes deposited by focused ion beam single palladium nanowire, ZnO nanostructures, and graphene multilayer flakes dispersed in appropriate solutions. Devices based on single Pd nanowire operate as hydrogen sensor at room temperature. Nanostructures of ZnO are assembled and characterized as photodetector.

Graphene multilayer flakes are assembled by DEP towards electrode gap milled by FIB, and its electrical resistance is measured.


Hydrogen Sensor Graphene Flake Dielectrophoretic Force Electrode Pattern High Field Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cronin, S.B., Lin, Y.-M., Rabin, O., Black, M.R., Ying, J.Y., Dresselhaus, M.S., Gai, P.L., Minet, J.P., Issi, J.P.: Making electrical contacts to nanowires with a thick oxide coating. Nanotechnology 13, 653–658 (2002)CrossRefGoogle Scholar
  2. 2.
    Gopal, V., Radmilovic, V.R., Daraio, C., Jin, S., Yang, P., Stach, E.A.: Rapid Prototyping of Site-Specific Nanocontacts by Electron and Ion Beam Assisted Direct-Write Nanolithography. Nano Lett. 4, 2059–2063 (2004)CrossRefGoogle Scholar
  3. 3.
    La Ferrara, V., Alfano, B., Fiorentino, G., Polichetti, T., Massera, E., Di Francia, G.: Nanopatterned platinum electrodes by focused ion beam in single palladium nanowire based devices. Microelectron. Eng. 88, 3261–3266 (2011)CrossRefGoogle Scholar
  4. 4.
    Ke, J.J., Tsai, K.T., Dai, Y.A., He, J.H.: Contact transport of focused ion beam-deposited Pt to Si nanowires: from measurement to understanding. Appl. Phys. Lett. 100, 053503–053505 (2012)CrossRefGoogle Scholar
  5. 5.
    Ho, C.Y., Chiu, S.H., Ke, J.J., Tsai, K.T., Dai, Y.A., Hsu, J.H., Chang, M.L., He, J.H.: Contact behavior of focused ion beam deposited Pt on p-type Si nanowires. Nanotechnology 21, 134008–134012 (2010)CrossRefGoogle Scholar
  6. 6.
    Rotkina, L., Lin, J.-F., Bird, J.P.: Nonlinear current–voltage characteristics of Pt nanowires and nanowire transistors fabricated by electron-beam deposition. Appl. Phys. Lett. 83, 4426–4428 (2003)CrossRefGoogle Scholar
  7. 7.
    Choi, T.-Y., Kang, B., Poulikakos, D.: Focused Ion Beam in thermal science and engineering. Microsc. Microanal. 13, 1498–1499 (2007)Google Scholar
  8. 8.
    Yun, M., Myung, N.V., Vasquez, R.P., Lee, C., Menke, E., Penner, R.M.: Electrochemically Grown Wires for Individually Addressable Sensor Arrays. Nano Lett. 4, 419–422 (2004)CrossRefGoogle Scholar
  9. 9.
    Mitsuishi, K., Noda, T., Mano, T., Tanaka, M., Furuya, K., Koguchi, N.: Structure of Nanowires Fabricated by Electron Beam Induced Deposition to Connect Self-Assembled Quantum Structures. Japanese J. Appl. Phys. 46, 6277–6281 (2007)CrossRefGoogle Scholar
  10. 10.
    Wu, S.-E., Liu, C.-P.: Direct writing of Si island arrays by focused ion beam milling. Nanotechnology 16, 2507–2511 (2005)CrossRefGoogle Scholar
  11. 11.
    Blom, T., Welch, K., Stromme, M., Coronel, E., Leifer, K.: Fabrication and characterization of highly reproducible, high resistance nanogaps made by focused ion beam milling. Nanotechnology 18, 285301–285306 (2007)CrossRefGoogle Scholar
  12. 12.
    Romano-Rodriguez, A., Hernandez-Ramirez, F.: Dual-beam focused ion beam (FIB): A prototyping tool for micro and nanofabrication. Microel. Engin. 84, 789–792 (2007)CrossRefGoogle Scholar
  13. 13.
    La Ferrara, V., Nasti, I., Alfano, B., Massera, E., Di Francia, G.: Focused Ion Beam nanopatterning for carbon nanotube ropes based sensor. Sensors Transducers Journal 85, 1708–1713 (2007)Google Scholar
  14. 14.
    Cheng, C., Gonela, R.K., Gu, Q., Haynie, D.T.: Self-Assembly of Metallic Nanowires from Aqueous Solution. Nano Lett. 5, 175–178 (2005)CrossRefGoogle Scholar
  15. 15.
    Hermanson, K.D., Lumsdon, S.O., Williams, J.P., Kaler, E.W., Velev, O.D.: Dielectrophoretic Assembly of Electrically Functional Microwires from Nanoparticle Suspensions. Science 294, 1082–1086 (2001)CrossRefGoogle Scholar
  16. 16.
    Bhatt, K.H., Velev, O.D.: Control and Modeling of the Dielectrophoretic Assembly of On-Chip Nanoparticle. Wires Langmuir 20, 467–476 (2004)CrossRefGoogle Scholar
  17. 17.
    Lumsdon, S.O., Scott, D.M.: Assembly of Colloidal Particles into Microwires Using an Alternating Electric Field. Langmuir 21, 4874–4880 (2005)CrossRefGoogle Scholar
  18. 18.
    Walter, E.C., Favier, F., Penner, R.M.: Palladium Mesowire Arrays for Fast Hydrogen Sensors and Hydrogen-Actuated Switches. Anal. Chem. 74, 1546–1553 (2002)CrossRefGoogle Scholar
  19. 19.
    Telari, K.A., Rogers, B.R., Fang, H., Shen, L., Weller, R.A., Braski, D.N.: Characterization of platinum films deposited by focused ion beam-assisted chemical vapor deposition. J. Vac. Sci. Technol. B 20, 590–595 (2002)CrossRefGoogle Scholar
  20. 20.
    La Ferrara, V., Fiorentino, G., Miglietta, M., Nasti, I., Polichetti, T., Massera E., Di Francia, G.: Focused Ion Beam and dielectrophoresis for graphene assembly into devices, in Proc. of I workshop ENEA on Graphene, Portici Research Centre, 15 July 2010 ISSN/0393-3016 (Italy) 56-61 (2010)Google Scholar
  21. 21.
    Quercia, L., Cerullo, F., La Ferrara, V., Baratto, C., Faglia, G.: Fabrication and Characterization of a Sensing Device Based on Porous Silicon. Phys. Status Solidi 182, 473–477 (2000)CrossRefGoogle Scholar
  22. 22.
    Fiorentino G.: Fabrication and Characterization of nanostructured materials by means of FIB and DEP, Thesis discussed at University “Federico II” of Napoli (Italy) (supervisor: Vera La Ferrara) (2009)Google Scholar
  23. 23.
    Burg, B.R., Schneider, J., Maurer, S., Schirmer, N., Poulikakos, D.: Dielectrophoretic integration of single- and few-layer graphenes. J. Appl. Phys. 107, 034302–034307 (2010)CrossRefGoogle Scholar
  24. 24.
    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., et al.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 9, 563–568 (2008)CrossRefGoogle Scholar
  25. 25.
    Pohl, H.A.: Dielectrophoresis. Cambridge University Press, Cambridge UK (1978)Google Scholar
  26. 26.
    Lin, Y., PhD Thesis: Modeling of dielectrophoresis in micro and nano systems (2008)Google Scholar
  27. 27.
    Morgan, H., Green, N.G.: AC electrokinetics: colloids and nanoparticles, Research Studies Press (2003)Google Scholar
  28. 28.
    La Ferrara, V., Alfano, B., Massera, E., Di Francia, G.: Single palladium nanowire growth in place assisted by dielectrophoresis and focused ion beam. J Nanosci. Nanotechnol 9, 2931–2936 (2009)CrossRefGoogle Scholar
  29. 29.
    La Ferrara, V., Alfano, B., Massera, E., Di Francia, G.: Focused Ion Beam patterning to dielectrophoretically assemble single nanowire based devices. J Phys 209, 012052–012055 (2010). conference seriesGoogle Scholar
  30. 30.
    Ranjan, N., Mertig, M., Cuniberti, G., Pompe, W.: Dielectrophoretic Growth of Metallic Nanowires and Microwires: Theory and Experiments. Langmuir 26, 552–559 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Portici Research CenterPorticiItaly

Personalised recommendations