MoS2 pp 237-268 | Cite as

The Application of Nanostructure MoS2 Materials in Energy Storage and Conversion

Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 21)

Abstract

A series of environmental problems have emerged owing to the excess consumption of fossil fuels. Development of clean alternative energy has turned into an urgent issue facing to all the nations. Nanostructured MoS2, with particular chemical and physical properties, has been studied extensively and intensively over the past years. A comprehensive overview of the progress achieved within the application of MoS2 in energy storage and conversion will be given, which is composed of lithium ion batteries, Mg ion batteries, dye-sensitized solar cells and photocatalytic hydrogen evolution.

References

  1. 1.
    Yue, G., Lin, J.Y., Tai, S.Y.: A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochim. Acta 85, 162–168 (2012)CrossRefGoogle Scholar
  2. 2.
    Zhang, X., Luster, B., Church A., et al.: Carbon nanotube-MoS2 composites as solid lubricants. ACS Appl. Mater. Interfaces 1(3), 735–739 (2009)Google Scholar
  3. 3.
    Wang, S., Jiang, X., Zheng, H., et al.: Solvothermal synthesis of MoS2/Carbon nanotube composites with improved electrochemical performance for lithium ion batteries. Nanosci. Nanotechnol. Lett. 4(4), 378–383 (2012)Google Scholar
  4. 4.
    Li, H., Li, W.J., Ma, L., et al.: Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route. J. Alloy. Compd. 471(1–2), 442–447 (2009)CrossRefGoogle Scholar
  5. 5.
    Feng, C.Q., Ma, J., Li, H., et al.: Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 44(9), 1811–1815 (2009)CrossRefGoogle Scholar
  6. 6.
    Ding, S.J., Zhang, D.Y., Chen, J.S., et al.: Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 4(1), 95–98 (2012)CrossRefGoogle Scholar
  7. 7.
    Wang, M., Li, G., Xu, H., et al.: Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl. Mater. Interfaces 5(3), 1003–1008 (2013)Google Scholar
  8. 8.
    Tenne, R., Margulis, L., Genut, M., et al.: Polyhedral and cylindrical structures of tungsten disulfide. Nature 360(6403), 444–446 (1992)CrossRefGoogle Scholar
  9. 9.
    Feldman, Y., Wasserman, E., Srolovitz, D.J., et al.: High-rate, gas-phase growth of Mos2 nested inorganic fullerenes and nanotubes. Science 267(5195), 222–225 (1995)CrossRefGoogle Scholar
  10. 10.
    Feldman, Y., Frey, G.L., Homyonfer, M., et al.: Bulk synthesis of inorganic fullerene-like MS(2) (M = Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 118(23), 5362–5367 (1996)CrossRefGoogle Scholar
  11. 11.
    Zelenski, C.M., Dorhout, P.K.: Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2. J. Am. Chem. Soc. 120(4), 734–742 (1998)CrossRefGoogle Scholar
  12. 12.
    Nath, M., Govindaraj, A., Rao, C.N.R.: Simple synthesis of MoS2 and WS2 nanotubes. Adv. Mater. 13(4), 283 (2001)CrossRefGoogle Scholar
  13. 13.
    Bonneau, P.R., Jarvis, R.F., Kaner, R.B.: Rapid solid-state synthesis of materials from molybdenum-disulfide to refractories. Nature 349(6309), 510–512 (1991)CrossRefGoogle Scholar
  14. 14.
    Mdleleni, M.M., Hyeon, T., Suslick, K.S.: Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc. 120(24), 6189–6190 (1998)CrossRefGoogle Scholar
  15. 15.
    Lee, H., Kanai, M., Kawai, T.: Preparation of transition metal chalcogenide thin films by pulsed laser ablation. Thin Solid Films 277(1–2), 98–100 (1996)CrossRefGoogle Scholar
  16. 16.
    Vollath, D., Szabo, D.V.: Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma. Mater. Lett. 35(3–4), 236–244 (1998)CrossRefGoogle Scholar
  17. 17.
    Smith Ronan, J., King Paul, J., Lotya, M., et al.: Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944 (2011)Google Scholar
  18. 18.
    Yao, Y., Lin, Z., Li, Z., et al.: Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 22(27), 13494–13499 (2012)Google Scholar
  19. 19.
    Lee, Y.H., Zhang, X.Q., Zhang, W., et al.: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012)Google Scholar
  20. 20.
    Zeng, Z., Yin, Z., Huang, X., et al.: Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem.-Int. Ed. 50(47), 11093–11097 (2011)Google Scholar
  21. 21.
    Castellanos-Gomez, A., Barkelid, M., Goossens, A.M., et al.: Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12(6), 3187–3192 (2012)CrossRefGoogle Scholar
  22. 22.
    Chen, X.H., Fan, R.: Low-temperature hydrothermal synthesis of transition metal dichalcogenides. Chem. Mater. 13(3), 802–805 (2001)CrossRefGoogle Scholar
  23. 23.
    Chen, J., Kuriyama, N., Yuan, H., et al.: Electrochemical hydrogen storage in MoS2 nanotubes. J. Am. Chem. Soc. 123(47), 11813–11814 (2001)CrossRefGoogle Scholar
  24. 24.
    Ding, S.J., Chen, J.S., Lou, X.W.: Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. Chem.-A Eur. J. 17(47), 13142–13145 (2011)CrossRefGoogle Scholar
  25. 25.
    Chhowalla, M., Amaratunga, G.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407(6801), 164–167 (2000)CrossRefGoogle Scholar
  26. 26.
    Zhang, J., Soon Jia, M., Loh Kian, P., et al.: Magnetic molybdenum disulfide nanosheet films. Nano Lett. 7(8), 2370–2376 (2007)Google Scholar
  27. 27.
    Divigalpitiya, W.M.R., Frindt, R.F., Morrison, S.R.: Inclusion systems of organic-molecules in restacked single-layer molybdenum-disulfide. Science 246(4928), 369–371 (1989)Google Scholar
  28. 28.
    Sun, M.Y., Adjaye, J., Nelson, A.E.: Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts. Appl. Catal. A-Gen. 263(2), 131–143 (2004)CrossRefGoogle Scholar
  29. 29.
    Park, S.K., Yu, S.H., Woo, S., et al.: A simple l-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Trans. 42(7), 2399–2405 (2013)CrossRefGoogle Scholar
  30. 30.
    Dresselhaus, M.S., Thomas, I.L.: Alternative energy technologies. Nature 414(6861), 332–337 (2001)CrossRefGoogle Scholar
  31. 31.
    Sen, U.K., Mitra, S.: High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Appl. Mater. Interfaces 5(4), 1240–1247 (2013)CrossRefGoogle Scholar
  32. 32.
    Yang, L.C., Wang, S.N., Mao, J.J., et al.: Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 25(8), 1180–1184 (2013)CrossRefGoogle Scholar
  33. 33.
    Bruce Peter G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. chem.-Int. ed. 47(16), 2930–2946 (2008)Google Scholar
  34. 34.
    Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4269 (2004)CrossRefGoogle Scholar
  35. 35.
    Zhou, X.S., Wan, L.J., Guo, Y.G.: Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. Chem. Commun. 49(18), 1838–1840 (2013)CrossRefGoogle Scholar
  36. 36.
    Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4301 (2004)CrossRefGoogle Scholar
  37. 37.
    Liu, H., Su, D.W., Zhou, R.F., et al.: Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2(8), 970–975 (2012)CrossRefGoogle Scholar
  38. 38.
    Sathish, M., Tomai, T., Honma, I.: Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage. J. Power Sources 217, 85–91 (2012)CrossRefGoogle Scholar
  39. 39.
    Chen, S., Wang, Y., Ahn, H., et al.: Microwave hydrothermal synthesis of high performance tin-graphene nanocomposites for lithium ion batteries. J. Power Sources 216, 22–27 (2012)Google Scholar
  40. 40.
    Park, S.K., Yu, S.H., Woo, S., et al.: A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties. Cryst. Eng. Comm. 14(24), 8323–8325 (2012)CrossRefGoogle Scholar
  41. 41.
    Hwang, H., Kim, H., Cho, J.: MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826–4830 (2011)CrossRefGoogle Scholar
  42. 42.
    Xiao, J., Choi, D.W., Cosimbescu, L., et al.: Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22(16), 4522–4524 (2010)CrossRefGoogle Scholar
  43. 43.
    Wang, Z., Chen, T., Chen, W.X., et al.: CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J Mater. Chem. A 1(6), 2202–2210 (2013)CrossRefGoogle Scholar
  44. 44.
    Zhang, C.F., Wu, H.B., Guo, Z.P., et al.: Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochem. Commun. 20, 7–10 (2012)CrossRefGoogle Scholar
  45. 45.
    Du, G.D., Guo, Z.P., Wang, S.Q., et al.: Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 46(7), 1106–1108 (2010)CrossRefGoogle Scholar
  46. 46.
    Wang, Q., Li, J.H.: Facilitated lithium storage in MoS2 overlayers supported on coaxial carbon nanotubes. J. Phys. Chem. C 111(4), 1675–1682 (2007)CrossRefGoogle Scholar
  47. 47.
    Nogueira, A., Znaiguia, R., Uzio, D., et al.: Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: synthesis and HDS catalytic properties. Appl. Catal. A-Gen. 429, 92–105 (2012)Google Scholar
  48. 48.
    Rapoport, L., Bilik, Y., Feldman, Y., et al.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387(6635), 791–793 (1997)CrossRefGoogle Scholar
  49. 49.
    Sun, M.Y., Adjaye, J., Nelson, A.E.: Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts. Appl. Catal. A-Gen. 263(2), 131–143 (2004)CrossRefGoogle Scholar
  50. 50.
    Bindumadhavan, K., Srivastava, S.K., Mahanty, S.: MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. Chem. Commun. 49(18), 1823–1825 (2013)CrossRefGoogle Scholar
  51. 51.
    Guo, Y.G., Hu, J.S., Wan, L.J.: Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20(15), 2878–2887 (2008)CrossRefGoogle Scholar
  52. 52.
    Li, H., Wang, Z., Chen, L., et al.: Research on advanced materials for Li-ion batteries. Adv. Mater. 21(45), 4593–4607 (2009)Google Scholar
  53. 53.
    Chen, J., Cheng, F.: Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42(6), 713–723 (2009)CrossRefGoogle Scholar
  54. 54.
    Chang, K., Chen, W.X., Ma, L., et al.: Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J. Mater. Chem. 21(17), 6251–6257 (2011)CrossRefGoogle Scholar
  55. 55.
    Chang, K., Chen, W.X.: l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011)CrossRefGoogle Scholar
  56. 56.
    Das, S.K., Mallavajula, R., Jayaprakash, N., et al.: Self-assembled MoS2-carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance. J. Mater. Chem. 22(26), 12988–12992 (2012)CrossRefGoogle Scholar
  57. 57.
    Chang, K., Chen, W.X.: Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. J. Mater. Chem. 21(43), 17175–17184 (2011)CrossRefGoogle Scholar
  58. 58.
    Chang, K., Chen, W.X.: In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 47(14), 4252–4254 (2011)CrossRefGoogle Scholar
  59. 59.
    Aurbach, D., Lu, Z., Schechter, A., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407(6805), 724–727 (2000)CrossRefGoogle Scholar
  60. 60.
    Peng, B., Chen, J.: Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells. Coord. Chem. Rev. 253(23–24), 2805–2813 (2009)CrossRefGoogle Scholar
  61. 61.
    Aurbach, D., Suresh Gurukar, S., Levi, E., et al.: Progress in rechargeable magnesium battery technology. Adv. Mater. 19(23), 4260 (2007)Google Scholar
  62. 62.
    Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable Mg batteries: the challenge of new cathode materials. Chem. Mater. 22(3), 860–868 (2010)CrossRefGoogle Scholar
  63. 63.
    Novak, P., Imhof, R., Haas, O.: Magnesium insertion electrodes for rechargeable nonaqueous batteries - a competitive alternative to lithium? Electrochim. Acta 45(1–2), 351–367 (1999)CrossRefGoogle Scholar
  64. 64.
    Liang, Y.L., Feng, R.J., Yang, S.Q., et al.: Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv. Mater. 23(5), 640 (2011)CrossRefGoogle Scholar
  65. 65.
    Tao, Z.L., Xu, L.N., Gou, X.L., et al.: TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem. Commun. 18, 2080–2081 (2004)CrossRefGoogle Scholar
  66. 66.
    Nuli, Y., Yang, J., Li, Y., et al.: Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem. Commun. 46(21), 3794–3796 (2010)Google Scholar
  67. 67.
    Li, X.L., Li, Y.D.: MoS2 nanostructures: synthesis and electrochemical Mg2 + intercalation. J Phys. Chem. B 108(37), 13893–13900 (2004)CrossRefGoogle Scholar
  68. 68.
    Liu, C.J., Tai, S.Y., Chou, S.W., et al.: Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. J. Mater. Chem. 22(39), 21057–21064 (2012)CrossRefGoogle Scholar
  69. 69.
    Oregan, B., Gratzel, M.: A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TIO2 films. Nature 353(6346), 737–740 (1991)CrossRefGoogle Scholar
  70. 70.
    Gratzel, M.: Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)CrossRefGoogle Scholar
  71. 71.
    Graetzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42(11SI), 1788–1798 (2009)Google Scholar
  72. 72.
    Lin, J.Y., Chan, C.Y., Chou, S.W.: Electrophoretic deposition of transparent MoS2-graphene nanosheet composite films as counter electrodes in dye-sensitized solar cells. Chem. Commun. 49(14), 1440–1442 (2013)CrossRefGoogle Scholar
  73. 73.
    Olsen, E., Hagen, G., Lindquist, S.E.: Dissolution of platinum in methoxy propionitrile containing LiI/I-2. Sol. Energy Mater. Sol. Cells 63(3), 267–273 (2000)CrossRefGoogle Scholar
  74. 74.
    Kay, A., Gratzel, M.: Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44(1), 99–117 (1996)CrossRefGoogle Scholar
  75. 75.
    Imoto, K., Takahashi, K., Yamaguchi, T., et al.: High-performance carbon counter electrode for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 79(4), 459–469 (2003)CrossRefGoogle Scholar
  76. 76.
    Murakami Takurou, N., Graetzel, M.: Counter electrodes for DSC: application of functional materials as catalysts. Inorg. Chim. ACTA. 361(3), 572–580 (2008)Google Scholar
  77. 77.
    Banks, C.E., Davies, T.J., Wildgoose, G.G., et al.: Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun. 7, 829–841 (2005)CrossRefGoogle Scholar
  78. 78.
    Xiao, Y., Lin, J.Y., Tai, S.Y., et al.: Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22(37), 19919–19925 (2012)CrossRefGoogle Scholar
  79. 79.
    Wang, M., Anghel Alina, M., Marsan, B., et al.: CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 131(44), 15976 (2009)CrossRefGoogle Scholar
  80. 80.
    Lin, J.Y., Liao, J.H., Chou, S.W.: Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells. Electrochim. Acta 56(24), 8818–8826 (2011)CrossRefGoogle Scholar
  81. 81.
    Sun, H., Qin, D., Huang, S., et al.: Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 4(8), 2630–2637 (2011)CrossRefGoogle Scholar
  82. 82.
    Jiang, Q.W., Li, G.R., Gao, X.P.: Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun. 44, 6720–6722 (2009)CrossRefGoogle Scholar
  83. 83.
    Li, G.R., Wang, F., Jiang, Q.W., et al.: Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew. Chem.-Int. Ed. 49(21), 3653–3656 (2010)Google Scholar
  84. 84.
    Jang, J.S., Ham, D.J., Ramasamy, E., et al.: Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem. Commun. 46(45), 8600–8602 (2010)Google Scholar
  85. 85.
    Wu, M., Lin, X., Hagfeldt, A., et al.: Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew. Chem.-Int. Ed. 50(15), 3520–3524 (2011)Google Scholar
  86. 86.
    Wu, M., Wang, Y., Lin, X., et al.: Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys. 13(43), 19298–19301 (2011)CrossRefGoogle Scholar
  87. 87.
    Zhou, W., Yin, Z., Du, Y., et al.: Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9(1), 140–147 (2013)CrossRefGoogle Scholar
  88. 88.
    Mai, N., Tran Phong, D., Pramana Stevin, S., et al.: In situ photo-assisted deposition of MoS2 electrocatalyst onto zinc cadmium sulphide nanoparticle surfaces to construct an efficient photocatalyst for hydrogen generation. Nanoscale 5(4), 1479–1482 (2013)Google Scholar
  89. 89.
    Andrew Frame, F., Osterloh Frank, E.: CdSe-MoS2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114(23), 10628–10633 (2010)Google Scholar
  90. 90.
    Hinnemann, B., Moses, P.G., Bonde, J., et al.: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127(15), 5308–5309 (2005)CrossRefGoogle Scholar
  91. 91.
    Tran Phong, D., Pramana Stevin, S., Kale Vinayak, S., et al.: Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the Earth for hydrogen generation. Chem.-A Eur. J. 18(44), 13994–13999 (2012)Google Scholar
  92. 92.
    Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972)CrossRefGoogle Scholar
  93. 93.
    Min, S., Lu, G.: Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 co-catalyst confined on graphene sheets-the role of graphene. J. Phys. Chem. C. 116(48), 25415–25424 (2012)Google Scholar
  94. 94.
    Walter Michael, G., Warren Emily, L., Mckone James, R., et al.: Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010)Google Scholar
  95. 95.
    Chen, G., Li, D., Li, F., et al.: Ball-milling combined calcination synthesis of MoS2/CdS photocatalysts for high photocatalytic H-2 evolution activity under visible light irradiation. Appl. Catal. A-Gen. 443, 138–144 (2012)Google Scholar
  96. 96.
    Xu, Z., Wu, G., Yan, H., et al.: Photocatalytic H-2 evolution on MoS2/CdS catalysts under visible light irradiation. J. Phys. Chem. C 114(4), 1963–1968 (2010)CrossRefGoogle Scholar
  97. 97.
    Zhang, W., Wang, Y., Wang, Z., et al.: Highly efficient and noble metal-free NiS/CdS photocatalysts for H-2 evolution from lactic acid sacrificial solution under visible light. Chem. Commun. 46(40), 7631–7633 (2010)CrossRefGoogle Scholar
  98. 98.
    Liu, H., Zhang, K., Jing, D., et al.: SrS/CdS composite powder as a novel photocatalyst for hydrogen production under visible light irradiation. Int. J. Hydrogen Energy 35(13SI), 7080–7086 (2010)Google Scholar
  99. 99.
    Zhang, J., Yu, J., Zhang, Y., et al.: Visible light photocatalytic H-2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11(11), 4774–4779 (2011)Google Scholar
  100. 100.
    Xu, Z., Han, J., Ma, G., et al.: Photocatalytic H-2 evolution on CdS loaded with WS2 as co-catalyst under visible light irradiation. J. Phys. Chem. C 115(24), 12202–12208 (2011)CrossRefGoogle Scholar
  101. 101.
    Xu, Z., Yan, H., Wu, G., et al.: Enhancement of photocatalytic H-2 evolution on CdS by loading MOS2 as co-catalyst under visible light irradiation. J. Am. Chem. Soc. 130(23), 7176 (2008)CrossRefGoogle Scholar
  102. 102.
    Xiang, Q., Yu, J., Jaroniec, M.: Synergetic effect of MoS2 and graphene as co-catalysts for enhanced photocatalytic H-2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134(15), 6575–6578 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and Department of Applied ChemistrySchool of Science, Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations