Skip to main content
Book cover

MoS2 pp 77–101Cite as

Ab Initio Study on MoS2 and Its Family: Chemical Trend, Band Alignment, Alloying, and Gap Modulation

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 21))

Abstract

In this chapter, recent progresses on the theoretical study of low-dimensional semiconducting transition metal dichalcogenides (TMD) MX2 (M = Mo, W; X = S, Se, Te) are reviewed. The chemical trends in basic structural and electronic properties are discussed, and the band offsets between MX2 monolayers are calculated. A simple model is proposed to interpret the chemical trends of the band offsets. Moreover, the suitable band edge position of MoS2 monolayer makes it a good candidate for the photo-splitting of water. The cluster expansion method and special quasi-random structure approach are employed to study the properties of MX2 alloys. It is demonstrated that in (S, Se) alloys, there exist stable-ordered alloy structures even at 0 K, whereas in (Se,Te) and (S,Te) alloys, phase separation into the two constituents will occur at 0 K. Nevertheless, a complete miscibility in these alloys can be achieved by increasing temperature. Finally, we show that the bandgap of MX2 nanostructures can be efficiently modulated by strain, electronic field, and alloying. By increasing strain or electric field strength, the bandgap of MX2 can be reduced, and gap closure is achieved when the strain/field strength reaches a critical value. In MX2 alloys, the bandgap and band edge position varies as the composition changes, and exhibits bowing effect, which is a joint effect of volume deformation, chemical difference, and structure relaxation. More importantly, the direct gap character of MX2 monolayer is retained in the alloys, making them good candidates for 2D optoelectronics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA. 102, 10451 (2005)

    Article  CAS  Google Scholar 

  2. Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.-Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., Nicolosi, V.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568 (2011)

    Article  CAS  Google Scholar 

  3. Tongay, S., Zhou, J., Ataca, C., Lo, K., Matthews, T.S., Li, J., Grossman, J.C., Wu, J.: Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576 (2012)

    Article  CAS  Google Scholar 

  4. Zeng, Z., Yin, Z., Huang, X., Li, H., He, Q., Lu, G., Boey, F., Zhang, H.: Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093 (2011)

    Article  CAS  Google Scholar 

  5. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nature Nanotech. 6, 147 (2012)

    Article  Google Scholar 

  6. Radisavljevic, B., Whitwicj, M.B., Kis, A.: Integrated circuits and logic operations based on single-layer MoS2. ACS. Nano. 5, 9934 (2011)

    Article  CAS  Google Scholar 

  7. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  Google Scholar 

  8. Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271 (2010)

    Google Scholar 

  9. Cao, T., Wang, G., Han, W., Ye, H., Zhu, C., Shi, J., Niu, Q., Tan, P., Wang, E., Liu, B., Feng, J.: Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012)

    Article  Google Scholar 

  10. Zeng, H., Dai, J., Yao, W., Xiao, D., Cui, X.: Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490 (2012)

    Article  CAS  Google Scholar 

  11. Li, J., Wang, L.-W.: First principle study of core/shell structure quantum dots. Appl. Phys. Lett. 85, 2929 (2004)

    Article  CAS  Google Scholar 

  12. Zhang, S.B., Wei, S.H., Zunger, A.: Microscopic origin of the phenomenological equilibrium doping limit rule in n-type III-V semiconductors. Phys. Rev. Lett. 84, 1232 (2000)

    Article  CAS  Google Scholar 

  13. Kavan, L., Grätzel, M., Gilbert, S.E., Klemenz, C., Scheel, H.J.: Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118, 6716 (1996)

    Article  CAS  Google Scholar 

  14. Kang, J., Tongay, S., Zhou, J., Li, J., Wu, J.: Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013)

    Article  Google Scholar 

  15. Johari, P., Shenoy, V.B.: Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS. Nano. 6, 5449 (2012)

    Article  CAS  Google Scholar 

  16. Yue, Q., Kang, J., Shao, Z., Zhang, X., Chang, S., Wang, G., Qin, S., Li, J.: Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys. Lett. A 376, 1166 (2012)

    Article  CAS  Google Scholar 

  17. Ramasubramaniam, A., Naveh, D., Towe, E.: Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B 84, 205325 (2011)

    Article  Google Scholar 

  18. Yue, Q., Chang, S., Kang, J., Zhang, X., Shao, Z., Qin, S., Li, J.: Bandgap tuning in armchair MoS2 nanoribbon. J. Phys. Condens. Matter 24, 335501 (2012)

    Article  Google Scholar 

  19. Komsa, H.-P., Krasheninnikov, A.V.: Two-dimensional transition metal dichalcogenide alloys: stability and electronic properties. J. Phys. Chem. Lett. 3, 3652 (2012)

    Article  CAS  Google Scholar 

  20. Kang, J., Tongay, J., Li, J., Wu, J.: Monolayer semiconducting transition metal dichalcogenide alloys: stability and band bowing. J. Appl. Phys. 113, 143703 (2013)

    Google Scholar 

  21. Kresse, G., Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  CAS  Google Scholar 

  22. Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002)

    Article  CAS  Google Scholar 

  23. Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003)

    Article  CAS  Google Scholar 

  24. Sanchez, J., Ducastelle, F., Gratias, D.: Generalized cluster description of multicomponent systems. Phys. A 128, 334 (1984)

    Article  Google Scholar 

  25. Ferreira, L.G., Wei, S.-H., Zunger, A.: First-principles calculation of alloy phase diagrams: The renormalized-interaction approach. Phys. Rev. B 40, 3197 (1989)

    Article  CAS  Google Scholar 

  26. Zunger, A., Wei, S.-H., Ferreira, L.G., Bernard, J.E.: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990)

    Article  CAS  Google Scholar 

  27. Van de Walle, A., Asta, M., Ceder, G.: The alloy theoretic automated toolkit: a user guide. Calphad 26, 539 (2002)

    Article  Google Scholar 

  28. Castellanos-Gomez, A., Poot, M., Steele, G.A., Van der Zant, H.S.J., Agraït, N., Rubio-Bollinger, G.: Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772 (2012)

    Article  CAS  Google Scholar 

  29. Wei, S.-H., Zunger, A.: Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys. J. Appl. Phys. 78, 3846 (1995)

    Article  CAS  Google Scholar 

  30. Gai, Y., Li, J., Li, S–.S., Xia, J.-B., Wei, S.-H.: Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys. Rev. Lett. 102, 036402 (2009)

    Article  Google Scholar 

  31. Chakrapani, V., Angus, J.C., Anderson, A.B., Wolter, S.D., Stoner, B.R., Sumanasekera, G.U.: Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318, 1424 (2007)

    Article  CAS  Google Scholar 

  32. Jiang, H.: Electronic band structures of molybdenum and tungsten dichalcogenides by the GW approach. J. Phys. Chem. C 116, 7664 (2012)

    Article  CAS  Google Scholar 

  33. Lambrecht, W.R.L., Segall, B.: Electronic structure and equilibrium properties of Ga x Al1-x N alloys. Phys. Rev. B 47, 9289 (1993)

    Article  CAS  Google Scholar 

  34. Alling, B., Ruban, A.V., Karimi, A., Peil, O.E., Simak, S.I., Hultman, L., Abrikosov, I.A.: Mixing and decomposition thermodynamics of c-Ti1-x Al x N from first-principles calculations. Phys. Rev. B 75, 045123 (2007)

    Article  Google Scholar 

  35. Teles, L.K., Furthmüller, J., Scolfaro, L.M.R., Leite, J.R., Bechstedt, F.: First-principles calculations of the thermodynamic and structural properties of strained InxGa1-xN and Al x Ga1-x N alloys. Phys. Rev. B 62, 2475 (2000)

    Article  CAS  Google Scholar 

  36. Zhang, Z., Guo, W.: Energy-gap modulation of BN ribbons by transverse electric fields: first-principles calculations. Phys. Rev. B 77, 075403 (2008)

    Article  Google Scholar 

  37. Zheng, F., Liu, Z., Wu, J., Duan, W., Gu, B.-L.: Scaling law of the giant Stark effect in boron nitride nanoribbons and nanotubes. Phys. Rev. B 78, 085423 (2008)

    Article  Google Scholar 

  38. Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W., Haller, E.E., Miotkowski, I., Ramdas, A.K., Su, C.-H., Sou, I.K., Perera, R.C.C., Denlinger, J.D.: Origin of the large band-gap bowing in highly mismatched semiconductor alloys. Phys. Rev. B 67, 035207 (2003)

    Article  Google Scholar 

  39. Wu, J., Walukiewicz, W., Yu, K.M., Denlinger, J.D., Shan, W., Ager, J.W., Kimura, A., Tang, H.F., Kuech, T.F.: Valence band hybridization in N-rich GaN1−x As x alloys. Phys. Rev. B 70, 115214 (2004)

    Article  Google Scholar 

  40. Yin, W.-J., Gong, X.-G., Wei, S.-H.: Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the Sn x Ge1−x alloys. Phys. Rev. B 78, 161203 (2008)

    Article  Google Scholar 

  41. Wei, S.-H., Zunger, A.: Disorder effects on the density of states of the II-VI semiconductor alloys Hg0.5Cd0.5Te, Cd0.5Zn0.5Te, and Hg0.5Zn0.5Te. Phys. Rev. B 43, 1662 (1991)

    Article  CAS  Google Scholar 

  42. Bernard, J.E., Zunger, A.: Optical bowing in zinc chalcogenide semiconductor alloys. Phys. Rev. B 34, 5992 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J. Li gratefully acknowledges financial support from the National Science Fund for Distinguished Young Scholar (Grant No. 60925016). This work is partially supported by the National Basic Research Program of China (Grant No. 2011CB921901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kang, J., Li, J. (2014). Ab Initio Study on MoS2 and Its Family: Chemical Trend, Band Alignment, Alloying, and Gap Modulation. In: Wang, Z. (eds) MoS2. Lecture Notes in Nanoscale Science and Technology, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-02850-7_4

Download citation

Publish with us

Policies and ethics