Skip to main content

Structure-Preserving Shock-Capturing Methods: Late-Time Asymptotics, Curved Geometry, Small-Scale Dissipation, and Nonconservative Products

  • Chapter
  • First Online:
Advances in Numerical Simulation in Physics and Engineering

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 3))

Abstract

We consider weak solutions to nonlinear hyperbolic systems of conservation laws arising in compressible fluid dynamics and we describe recent work on the design of structure-preserving numerical methods. We focus on preserving, on one hand, the late-time asymptotics of solutions and, on the other hand, the geometrical effects that arise in certain applications involving curved space. First, we study here nonlinear hyperbolic systems with stiff relaxation in the late time regime. By performing a singular analysis based on a Chapman–Enskog expansion, we derive an effective system of parabolic type and we introduce a broad class of finite volume schemes which are consistent and accurate even for asymptotically late times. Second, for nonlinear hyperbolic conservation laws posed on a curved manifold, we formulate geometrically consistent finite volume schemes and, by generalizing the Cockburn–Coquel–LeFloch theorem, we establish the strong convergence of the approximate solutions toward entropy solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amorim, P., Ben-Artzi, M., LeFloch, P.G.: Hyperbolic conservation laws on manifolds: total variation estimates and the finite volume method. Methods Appl. Anal. 12, 291–324 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amorim, P., LeFloch, P.G., Okutmustur, B.: Finite volume schemes on Lorentzian manifolds. Commun. Math. Sci. 6, 1059–1086 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beljadid, A., LeFloch, P.G., Mohamadian, M.: A geometry-preserving finite volume method for conservation laws in curved geometries (2003, preprint HAL-00922214)

    Google Scholar 

  4. Ben-Artzi, M., LeFloch, P.G.: The well-posedness theory for geometry compatible hyperbolic conservation laws on manifolds. Ann. Inst. H. Poincaré Nonlinear Anal. 24, 989–1008 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Artzi, M., Falcovitz, J., LeFloch, P.G.: Hyperbolic conservation laws on the sphere: a geometry-compatible finite volume scheme. J. Comput. Phys. 228, 5650–5668 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berthon, C., Turpault, R.: Asymptotic preserving HLL schemes. Numer. Meth. Partial Differ. Equ. 27, 1396–1422 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berthon, C., Charrier, P., Dubroca, B.: An HLLC scheme to solve the M1 model of radiative transfer in two space dimensions. J. Sci. Comput. 31, 347–389 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Berthon, C., Coquel, F., LeFloch, P.G.: Why many theories of shock waves are necessary: kinetic relations for nonconservative systems. Proc. R. Soc. Edinb. 137, 1–37 (2012)

    Article  MathSciNet  Google Scholar 

  9. Berthon, C., LeFloch, P.G., Turpault, R.: Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations. Math. Comput. 82, 831–860 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge-Kutta schemes and application to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31, 1926–1945 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Boscarino, S., LeFloch, P.G., Russo, G.: Highorder asymptotic preserving methods for fully nonlinear relaxation problems. SIAM J. Sci. Comput. (2014). See also ArXiv:1210.4761

    Google Scholar 

  12. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Birkhäuser, Zurich (2004)

    Book  MATH  Google Scholar 

  13. Bouchut, F., Ounaissa, H., Perthame, B.: Upwinding of the source term at interfaces for Euler equations with high friction. J. Comput. Math. Appl. 53, 361–375 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Boutin, B., Coquel, F., LeFloch, P.G.: Coupling techniques for nonlinear hyperbolic equations. I: self-similar diffusion for thin interfaces. Proc. R. Soc. Edinb. 141A, 921–956 (2011)

    MathSciNet  Google Scholar 

  15. Boutin, B., Coquel, F., LeFloch, P.G.: Coupling techniques for nonlinear hyperbolic equations. III: the well–balanced approximation of thick interfaces. SIAM J. Numer. Anal. 51, 1108–1133 (2013)

    Google Scholar 

  16. Boutin, B., Coquel, F., LeFloch, P.G.: Coupling techniques for nonlinear hyperbolic equations. IV: multicomponent coupling and multidimensional wellbalanced schemes. Math. Comput. (2014). See ArXiv: 1206.0248

    Google Scholar 

  17. Buet, C., Cordier, S.: An asymptotic preserving scheme for hydrodynamics radiative transfer models: numerics for radiative transfer. Numer. Math. 108, 199–221 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Buet, C., Després, B.: Asymptotic preserving and positive schemes for radiation hydrodynamics. J. Comput. Phys. 215, 717–740 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Castro, M.J., LeFloch, P.G., Munoz-Ruiz, M.L., Pares, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227, 8107–8129 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chalons, C., LeFloch, P.G.: Computing undercompressive waves with the random choice scheme: nonclassical shock waves. Interfaces Free Boundaries 5, 129–158 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chen, G.Q., Levermore, C.D., Liu, T.P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47, 787–830 (1995)

    Article  MathSciNet  Google Scholar 

  22. Cockburn, B., Coquel, F., LeFloch, P.G.: An error estimate for high-order accurate finite volume methods for scalar conservation laws. Preprint 91-20, AHCRC Institute, Minneapolis, 1991

    Google Scholar 

  23. Cockburn, B., Coquel, F., LeFloch, P.G.: Error estimates for finite volume methods for multidimensional conservation laws. Math. Comput. 63, 77–103 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cockburn, B., Coquel, F., LeFloch, P.G.: Convergence of finite volume methods for multi-dimensional conservation laws. SIAM J. Numer. Anal. 32, 687–705 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Coquel, F., LeFloch, P.G.: Convergence of finite difference schemes for conservation laws in several space dimensions. C. R. Acad. Sci. Paris Ser. I 310, 455–460 (1990)

    MATH  MathSciNet  Google Scholar 

  26. Coquel, F., LeFloch, P.G.: Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach. Math. Comp. 57, 169–210 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Coquel, F., LeFloch, P.G.: Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory. SIAM J. Numer. Anal. 30, 675–700 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  29. Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)

    MATH  MathSciNet  Google Scholar 

  30. DiPerna, R.J.: Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88, 223–270 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. Donatelli, D., Marcati, P.: Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems. Trans. Am. Math. Soc. 356, 2093–2121 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Dubois, F., LeFloch, P.G.: Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differ. Equ. 31, 93–122 (1988)

    Article  MathSciNet  Google Scholar 

  33. Ernest, J., LeFloch, P.G., Mishra, S.: Schemes with well-controlled dissipation (WCD). I. SIAM J. Numer. Anal. (2014)

    Google Scholar 

  34. Eymard, R., Gallouët, T., Herbin, R.: The finite volume method. In: Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)

    Google Scholar 

  35. Greenberg, J.M., Leroux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)

    MATH  MathSciNet  Google Scholar 

  36. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hayes, B.T., LeFloch, P.G.: Nonclassical shocks and kinetic relations: finite difference schemes. SIAM J. Numer. Anal. 35, 2169–2194 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hou, T.Y., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62, 497–530 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  39. Jin, S., Xin, Z.: The relaxation scheme for systems of conservation laws in arbitrary space dimension. Commun. Pure Appl. Math. 45, 235–276 (1995)

    Article  MathSciNet  Google Scholar 

  40. Kröner, D.: Finite volume schemes in multidimensions. In: Numerical Analysis 1997 (Dundee). Pitman Research Notes in Mathematics Series, vol. 380, pp. 179–192. Longman, Harlow (1998)

    Google Scholar 

  41. Kröner, D., Noelle, S., Rokyta, M.: Convergence of higher-order upwind finite volume schemes on unstructured grids for scalar conservation laws with several space dimensions. Numer. Math. 71, 527–560 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kruzkov, S.: First-order quasilinear equations with several space variables. Math. USSR Sb. 10, 217–243 (1970)

    Article  Google Scholar 

  43. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. In: Regional Conference Series in Applied Mathematics, vol. 11. SIAM, Philadelphia (1973)

    Google Scholar 

  44. LeFloch, P.G.: An introduction to nonclassical shocks of systems of conservation laws. In: Kroner, D., Ohlberger, M., Rohde, C. (eds.) International School on Hyperbolic Problems, Freiburg, Germany, Oct. 1997. Lecture Notes on Computer Engineering, vol. 5, pp. 28–72. Springer, Berlin (1999)

    Google Scholar 

  45. LeFloch, P.G.: Hyperbolic systems of conservation laws: the theory of classical and nonclassical shock waves. In: Lectures in Mathematics. ETH Zürich/Birkhäuser, Basel (2002)

    Book  Google Scholar 

  46. LeFloch, P.G.: Hyperbolic conservation laws and spacetimes with limited regularity. In: Benzoni, S., Serre, D. (eds.) Proceedings of 11th International Conference on Hyperbolic Problems: Theory, Numerics, and Applications, pp. 679–686. ENS Lyon, 17–21 July 2006. Springer, Berlin (See arXiv:0711.0403)

    Google Scholar 

  47. LeFloch, P.G.: Kinetic relations for undercompressive shock waves: physical, mathematical, and numerical issues. Contemp. Math. 526, 237–272 (2010)

    Article  MathSciNet  Google Scholar 

  48. LeFloch, P.G., Makhlof, H.: A geometry-preserving finite volume method for compressible fluids on Schwarzschild spacetime. Commun. Comput. Phys. (2014). See also ArXiv:1212.6622

    Google Scholar 

  49. LeFloch, P.G., Mishra, S.: Numerical methods with controled dissipation for small-scale dependent shocks. Acta Numer. (2014). See Preprint ArXiv 1312.1280

    Google Scholar 

  50. LeFloch, P.G., Mohamadian, M.: Why many shock wave theories are necessary: fourth-order models, kinetic functions, and equivalent equations. J. Comput. Phys. 227, 4162–4189 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. LeFloch, P.G., Okutmustur, B.: Hyperbolic conservation laws on manifolds with limited regularity. C. R. Math. Acad. Sci. Paris 346, 539–543 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. LeFloch, P.G., Okutmustur, B.: Hyperbolic conservation laws on spacetimes: a finite volume scheme based on differential forms. Far East J. Math. Sci. 31, 49–83 (2008)

    MATH  MathSciNet  Google Scholar 

  53. LeFloch, P.G., Rohde, C.: High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37, 2023–2060 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  54. LeFloch, P.G., Makhlof, H., Okutmustur, B.: Relativistic Burgers equations on curved spacetimes: derivation and finite volume approximation. SIAM J. Numer. Anal. (2012, preprint). ArXiv:1206.3018

    Google Scholar 

  55. LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  56. LeVeque, R.J.: Finite volume methods for hyperbolic problems. In: Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  57. Marcati, P.: Approximate solutions to conservation laws via convective parabolic equations. Commun. Partial Differ. Equ. 13, 321–344 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  58. Marcati, P., Milani, A.: The one-dimensional Darcy’s law as the limit of a compressible Euler flow. J. Differ. Equ. 84, 129–146 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  59. Marcati, P., Rubino, B.: Hyperbolic to parabolic relaxation theory for quasilinear first order systems. J. Differ. Equ. 162, 359–399 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  60. Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  61. Russo, G.: Central schemes for conservation laws with application to shallow water equations. In: Rionero, S., Romano, G. (eds.) Trends Applied Mathematics and Mechanics, STAMM 2002, pp. 225–246. Springer, Italia SRL (2005)

    Google Scholar 

  62. Russo, G.: High-order shock-capturing schemes for balance laws. In: Numerical Solutions of Partial Differential Equations. Advanced Courses in Mathematics, CRM Barcelona, pp. 59–147. Birkhäuser, Basel (2009)

    Google Scholar 

  63. Russo, G., Khe, A.: High-order well-balanced schemes for systems of balance laws. In: Hyperbolic Problems: Theory, Numerics and Applications. Proceedings of Symposia in Applied Mathematics, Part 2, vol. 67, pp. 919–928. American Mathematical Society, Providence (2009)

    Google Scholar 

  64. Szepessy, S.: Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math. Comput. 53, 527–545 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  65. Tadmor, E.: Approximate solutions of nonlinear conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997). Lecture Notes in Mathematics, vol. 1697, pp. 1–149. Springer, Berlin (1998)

    Google Scholar 

  66. Westdickenberg, M., Noelle, S.: A new convergence proof for finite volume schemes using the kinetic formulation of conservation laws. SIAM J. Numer. Anal. 37, 742–757 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author was partially supported by the Agence Nationale de la Recherche (ANR) through the grant ANR SIMI-1-003-01, and by the Centre National de la Recherche Scientifique (CNRS). These notes were written at the occasion of a short course given by the authors at the University of Malaga for the XIV Spanish-French School Jacques-Louis Lions. The author is particularly grateful to C. Vázquez-Cendón and C. Parés for their invitation, warm welcome, and efficient organization during his stay in Malaga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe G. LeFloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

LeFloch, P.G. (2014). Structure-Preserving Shock-Capturing Methods: Late-Time Asymptotics, Curved Geometry, Small-Scale Dissipation, and Nonconservative Products. In: Parés, C., Vázquez, C., Coquel, F. (eds) Advances in Numerical Simulation in Physics and Engineering. SEMA SIMAI Springer Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-02839-2_4

Download citation

Publish with us

Policies and ethics