Abstract
We consider weak solutions to nonlinear hyperbolic systems of conservation laws arising in compressible fluid dynamics and we describe recent work on the design of structure-preserving numerical methods. We focus on preserving, on one hand, the late-time asymptotics of solutions and, on the other hand, the geometrical effects that arise in certain applications involving curved space. First, we study here nonlinear hyperbolic systems with stiff relaxation in the late time regime. By performing a singular analysis based on a Chapman–Enskog expansion, we derive an effective system of parabolic type and we introduce a broad class of finite volume schemes which are consistent and accurate even for asymptotically late times. Second, for nonlinear hyperbolic conservation laws posed on a curved manifold, we formulate geometrically consistent finite volume schemes and, by generalizing the Cockburn–Coquel–LeFloch theorem, we establish the strong convergence of the approximate solutions toward entropy solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amorim, P., Ben-Artzi, M., LeFloch, P.G.: Hyperbolic conservation laws on manifolds: total variation estimates and the finite volume method. Methods Appl. Anal. 12, 291–324 (2005)
Amorim, P., LeFloch, P.G., Okutmustur, B.: Finite volume schemes on Lorentzian manifolds. Commun. Math. Sci. 6, 1059–1086 (2008)
Beljadid, A., LeFloch, P.G., Mohamadian, M.: A geometry-preserving finite volume method for conservation laws in curved geometries (2003, preprint HAL-00922214)
Ben-Artzi, M., LeFloch, P.G.: The well-posedness theory for geometry compatible hyperbolic conservation laws on manifolds. Ann. Inst. H. Poincaré Nonlinear Anal. 24, 989–1008 (2007)
Ben-Artzi, M., Falcovitz, J., LeFloch, P.G.: Hyperbolic conservation laws on the sphere: a geometry-compatible finite volume scheme. J. Comput. Phys. 228, 5650–5668 (2009)
Berthon, C., Turpault, R.: Asymptotic preserving HLL schemes. Numer. Meth. Partial Differ. Equ. 27, 1396–1422 (2011)
Berthon, C., Charrier, P., Dubroca, B.: An HLLC scheme to solve the M1 model of radiative transfer in two space dimensions. J. Sci. Comput. 31, 347–389 (2007)
Berthon, C., Coquel, F., LeFloch, P.G.: Why many theories of shock waves are necessary: kinetic relations for nonconservative systems. Proc. R. Soc. Edinb. 137, 1–37 (2012)
Berthon, C., LeFloch, P.G., Turpault, R.: Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations. Math. Comput. 82, 831–860 (2013)
Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge-Kutta schemes and application to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31, 1926–1945 (2009)
Boscarino, S., LeFloch, P.G., Russo, G.: Highorder asymptotic preserving methods for fully nonlinear relaxation problems. SIAM J. Sci. Comput. (2014). See also ArXiv:1210.4761
Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Birkhäuser, Zurich (2004)
Bouchut, F., Ounaissa, H., Perthame, B.: Upwinding of the source term at interfaces for Euler equations with high friction. J. Comput. Math. Appl. 53, 361–375 (2007)
Boutin, B., Coquel, F., LeFloch, P.G.: Coupling techniques for nonlinear hyperbolic equations. I: self-similar diffusion for thin interfaces. Proc. R. Soc. Edinb. 141A, 921–956 (2011)
Boutin, B., Coquel, F., LeFloch, P.G.: Coupling techniques for nonlinear hyperbolic equations. III: the well–balanced approximation of thick interfaces. SIAM J. Numer. Anal. 51, 1108–1133 (2013)
Boutin, B., Coquel, F., LeFloch, P.G.: Coupling techniques for nonlinear hyperbolic equations. IV: multicomponent coupling and multidimensional wellbalanced schemes. Math. Comput. (2014). See ArXiv: 1206.0248
Buet, C., Cordier, S.: An asymptotic preserving scheme for hydrodynamics radiative transfer models: numerics for radiative transfer. Numer. Math. 108, 199–221 (2007)
Buet, C., Després, B.: Asymptotic preserving and positive schemes for radiation hydrodynamics. J. Comput. Phys. 215, 717–740 (2006)
Castro, M.J., LeFloch, P.G., Munoz-Ruiz, M.L., Pares, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227, 8107–8129 (2008)
Chalons, C., LeFloch, P.G.: Computing undercompressive waves with the random choice scheme: nonclassical shock waves. Interfaces Free Boundaries 5, 129–158 (2003)
Chen, G.Q., Levermore, C.D., Liu, T.P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47, 787–830 (1995)
Cockburn, B., Coquel, F., LeFloch, P.G.: An error estimate for high-order accurate finite volume methods for scalar conservation laws. Preprint 91-20, AHCRC Institute, Minneapolis, 1991
Cockburn, B., Coquel, F., LeFloch, P.G.: Error estimates for finite volume methods for multidimensional conservation laws. Math. Comput. 63, 77–103 (1994)
Cockburn, B., Coquel, F., LeFloch, P.G.: Convergence of finite volume methods for multi-dimensional conservation laws. SIAM J. Numer. Anal. 32, 687–705 (1995)
Coquel, F., LeFloch, P.G.: Convergence of finite difference schemes for conservation laws in several space dimensions. C. R. Acad. Sci. Paris Ser. I 310, 455–460 (1990)
Coquel, F., LeFloch, P.G.: Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach. Math. Comp. 57, 169–210 (1991)
Coquel, F., LeFloch, P.G.: Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory. SIAM J. Numer. Anal. 30, 675–700 (1993)
Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)
Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)
DiPerna, R.J.: Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88, 223–270 (1985)
Donatelli, D., Marcati, P.: Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems. Trans. Am. Math. Soc. 356, 2093–2121 (2004)
Dubois, F., LeFloch, P.G.: Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differ. Equ. 31, 93–122 (1988)
Ernest, J., LeFloch, P.G., Mishra, S.: Schemes with well-controlled dissipation (WCD). I. SIAM J. Numer. Anal. (2014)
Eymard, R., Gallouët, T., Herbin, R.: The finite volume method. In: Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)
Greenberg, J.M., Leroux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)
Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)
Hayes, B.T., LeFloch, P.G.: Nonclassical shocks and kinetic relations: finite difference schemes. SIAM J. Numer. Anal. 35, 2169–2194 (1998)
Hou, T.Y., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62, 497–530 (1994)
Jin, S., Xin, Z.: The relaxation scheme for systems of conservation laws in arbitrary space dimension. Commun. Pure Appl. Math. 45, 235–276 (1995)
Kröner, D.: Finite volume schemes in multidimensions. In: Numerical Analysis 1997 (Dundee). Pitman Research Notes in Mathematics Series, vol. 380, pp. 179–192. Longman, Harlow (1998)
Kröner, D., Noelle, S., Rokyta, M.: Convergence of higher-order upwind finite volume schemes on unstructured grids for scalar conservation laws with several space dimensions. Numer. Math. 71, 527–560 (1995)
Kruzkov, S.: First-order quasilinear equations with several space variables. Math. USSR Sb. 10, 217–243 (1970)
Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. In: Regional Conference Series in Applied Mathematics, vol. 11. SIAM, Philadelphia (1973)
LeFloch, P.G.: An introduction to nonclassical shocks of systems of conservation laws. In: Kroner, D., Ohlberger, M., Rohde, C. (eds.) International School on Hyperbolic Problems, Freiburg, Germany, Oct. 1997. Lecture Notes on Computer Engineering, vol. 5, pp. 28–72. Springer, Berlin (1999)
LeFloch, P.G.: Hyperbolic systems of conservation laws: the theory of classical and nonclassical shock waves. In: Lectures in Mathematics. ETH Zürich/Birkhäuser, Basel (2002)
LeFloch, P.G.: Hyperbolic conservation laws and spacetimes with limited regularity. In: Benzoni, S., Serre, D. (eds.) Proceedings of 11th International Conference on Hyperbolic Problems: Theory, Numerics, and Applications, pp. 679–686. ENS Lyon, 17–21 July 2006. Springer, Berlin (See arXiv:0711.0403)
LeFloch, P.G.: Kinetic relations for undercompressive shock waves: physical, mathematical, and numerical issues. Contemp. Math. 526, 237–272 (2010)
LeFloch, P.G., Makhlof, H.: A geometry-preserving finite volume method for compressible fluids on Schwarzschild spacetime. Commun. Comput. Phys. (2014). See also ArXiv:1212.6622
LeFloch, P.G., Mishra, S.: Numerical methods with controled dissipation for small-scale dependent shocks. Acta Numer. (2014). See Preprint ArXiv 1312.1280
LeFloch, P.G., Mohamadian, M.: Why many shock wave theories are necessary: fourth-order models, kinetic functions, and equivalent equations. J. Comput. Phys. 227, 4162–4189 (2008)
LeFloch, P.G., Okutmustur, B.: Hyperbolic conservation laws on manifolds with limited regularity. C. R. Math. Acad. Sci. Paris 346, 539–543 (2008)
LeFloch, P.G., Okutmustur, B.: Hyperbolic conservation laws on spacetimes: a finite volume scheme based on differential forms. Far East J. Math. Sci. 31, 49–83 (2008)
LeFloch, P.G., Rohde, C.: High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37, 2023–2060 (2000)
LeFloch, P.G., Makhlof, H., Okutmustur, B.: Relativistic Burgers equations on curved spacetimes: derivation and finite volume approximation. SIAM J. Numer. Anal. (2012, preprint). ArXiv:1206.3018
LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)
LeVeque, R.J.: Finite volume methods for hyperbolic problems. In: Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)
Marcati, P.: Approximate solutions to conservation laws via convective parabolic equations. Commun. Partial Differ. Equ. 13, 321–344 (1988)
Marcati, P., Milani, A.: The one-dimensional Darcy’s law as the limit of a compressible Euler flow. J. Differ. Equ. 84, 129–146 (1990)
Marcati, P., Rubino, B.: Hyperbolic to parabolic relaxation theory for quasilinear first order systems. J. Differ. Equ. 162, 359–399 (2000)
Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)
Russo, G.: Central schemes for conservation laws with application to shallow water equations. In: Rionero, S., Romano, G. (eds.) Trends Applied Mathematics and Mechanics, STAMM 2002, pp. 225–246. Springer, Italia SRL (2005)
Russo, G.: High-order shock-capturing schemes for balance laws. In: Numerical Solutions of Partial Differential Equations. Advanced Courses in Mathematics, CRM Barcelona, pp. 59–147. Birkhäuser, Basel (2009)
Russo, G., Khe, A.: High-order well-balanced schemes for systems of balance laws. In: Hyperbolic Problems: Theory, Numerics and Applications. Proceedings of Symposia in Applied Mathematics, Part 2, vol. 67, pp. 919–928. American Mathematical Society, Providence (2009)
Szepessy, S.: Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math. Comput. 53, 527–545 (1989)
Tadmor, E.: Approximate solutions of nonlinear conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997). Lecture Notes in Mathematics, vol. 1697, pp. 1–149. Springer, Berlin (1998)
Westdickenberg, M., Noelle, S.: A new convergence proof for finite volume schemes using the kinetic formulation of conservation laws. SIAM J. Numer. Anal. 37, 742–757 (2000)
Acknowledgements
The author was partially supported by the Agence Nationale de la Recherche (ANR) through the grant ANR SIMI-1-003-01, and by the Centre National de la Recherche Scientifique (CNRS). These notes were written at the occasion of a short course given by the authors at the University of Malaga for the XIV Spanish-French School Jacques-Louis Lions. The author is particularly grateful to C. Vázquez-Cendón and C. Parés for their invitation, warm welcome, and efficient organization during his stay in Malaga.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
LeFloch, P.G. (2014). Structure-Preserving Shock-Capturing Methods: Late-Time Asymptotics, Curved Geometry, Small-Scale Dissipation, and Nonconservative Products. In: Parés, C., Vázquez, C., Coquel, F. (eds) Advances in Numerical Simulation in Physics and Engineering. SEMA SIMAI Springer Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-02839-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-02839-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02838-5
Online ISBN: 978-3-319-02839-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)