Structure-Preserving Shock-Capturing Methods: Late-Time Asymptotics, Curved Geometry, Small-Scale Dissipation, and Nonconservative Products

Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 3)


We consider weak solutions to nonlinear hyperbolic systems of conservation laws arising in compressible fluid dynamics and we describe recent work on the design of structure-preserving numerical methods. We focus on preserving, on one hand, the late-time asymptotics of solutions and, on the other hand, the geometrical effects that arise in certain applications involving curved space. First, we study here nonlinear hyperbolic systems with stiff relaxation in the late time regime. By performing a singular analysis based on a Chapman–Enskog expansion, we derive an effective system of parabolic type and we introduce a broad class of finite volume schemes which are consistent and accurate even for asymptotically late times. Second, for nonlinear hyperbolic conservation laws posed on a curved manifold, we formulate geometrically consistent finite volume schemes and, by generalizing the Cockburn–Coquel–LeFloch theorem, we establish the strong convergence of the approximate solutions toward entropy solutions.



The author was partially supported by the Agence Nationale de la Recherche (ANR) through the grant ANR SIMI-1-003-01, and by the Centre National de la Recherche Scientifique (CNRS). These notes were written at the occasion of a short course given by the authors at the University of Malaga for the XIV Spanish-French School Jacques-Louis Lions. The author is particularly grateful to C. Vázquez-Cendón and C. Parés for their invitation, warm welcome, and efficient organization during his stay in Malaga.


  1. 1.
    Amorim, P., Ben-Artzi, M., LeFloch, P.G.: Hyperbolic conservation laws on manifolds: total variation estimates and the finite volume method. Methods Appl. Anal. 12, 291–324 (2005)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Amorim, P., LeFloch, P.G., Okutmustur, B.: Finite volume schemes on Lorentzian manifolds. Commun. Math. Sci. 6, 1059–1086 (2008)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Beljadid, A., LeFloch, P.G., Mohamadian, M.: A geometry-preserving finite volume method for conservation laws in curved geometries (2003, preprint HAL-00922214)Google Scholar
  4. 4.
    Ben-Artzi, M., LeFloch, P.G.: The well-posedness theory for geometry compatible hyperbolic conservation laws on manifolds. Ann. Inst. H. Poincaré Nonlinear Anal. 24, 989–1008 (2007)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Ben-Artzi, M., Falcovitz, J., LeFloch, P.G.: Hyperbolic conservation laws on the sphere: a geometry-compatible finite volume scheme. J. Comput. Phys. 228, 5650–5668 (2009)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Berthon, C., Turpault, R.: Asymptotic preserving HLL schemes. Numer. Meth. Partial Differ. Equ. 27, 1396–1422 (2011)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Berthon, C., Charrier, P., Dubroca, B.: An HLLC scheme to solve the M1 model of radiative transfer in two space dimensions. J. Sci. Comput. 31, 347–389 (2007)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Berthon, C., Coquel, F., LeFloch, P.G.: Why many theories of shock waves are necessary: kinetic relations for nonconservative systems. Proc. R. Soc. Edinb. 137, 1–37 (2012)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Berthon, C., LeFloch, P.G., Turpault, R.: Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations. Math. Comput. 82, 831–860 (2013)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge-Kutta schemes and application to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31, 1926–1945 (2009)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Boscarino, S., LeFloch, P.G., Russo, G.: Highorder asymptotic preserving methods for fully nonlinear relaxation problems. SIAM J. Sci. Comput. (2014). See also ArXiv:1210.4761Google Scholar
  12. 12.
    Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Birkhäuser, Zurich (2004)CrossRefMATHGoogle Scholar
  13. 13.
    Bouchut, F., Ounaissa, H., Perthame, B.: Upwinding of the source term at interfaces for Euler equations with high friction. J. Comput. Math. Appl. 53, 361–375 (2007)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Boutin, B., Coquel, F., LeFloch, P.G.: Coupling techniques for nonlinear hyperbolic equations. I: self-similar diffusion for thin interfaces. Proc. R. Soc. Edinb. 141A, 921–956 (2011)MathSciNetGoogle Scholar
  15. 15.
    Boutin, B., Coquel, F., LeFloch, P.G.: Coupling techniques for nonlinear hyperbolic equations. III: the well–balanced approximation of thick interfaces. SIAM J. Numer. Anal. 51, 1108–1133 (2013)Google Scholar
  16. 16.
    Boutin, B., Coquel, F., LeFloch, P.G.: Coupling techniques for nonlinear hyperbolic equations. IV: multicomponent coupling and multidimensional wellbalanced schemes. Math. Comput. (2014). See ArXiv: 1206.0248Google Scholar
  17. 17.
    Buet, C., Cordier, S.: An asymptotic preserving scheme for hydrodynamics radiative transfer models: numerics for radiative transfer. Numer. Math. 108, 199–221 (2007)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Buet, C., Després, B.: Asymptotic preserving and positive schemes for radiation hydrodynamics. J. Comput. Phys. 215, 717–740 (2006)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Castro, M.J., LeFloch, P.G., Munoz-Ruiz, M.L., Pares, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227, 8107–8129 (2008)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Chalons, C., LeFloch, P.G.: Computing undercompressive waves with the random choice scheme: nonclassical shock waves. Interfaces Free Boundaries 5, 129–158 (2003)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Chen, G.Q., Levermore, C.D., Liu, T.P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47, 787–830 (1995)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Cockburn, B., Coquel, F., LeFloch, P.G.: An error estimate for high-order accurate finite volume methods for scalar conservation laws. Preprint 91-20, AHCRC Institute, Minneapolis, 1991Google Scholar
  23. 23.
    Cockburn, B., Coquel, F., LeFloch, P.G.: Error estimates for finite volume methods for multidimensional conservation laws. Math. Comput. 63, 77–103 (1994)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Cockburn, B., Coquel, F., LeFloch, P.G.: Convergence of finite volume methods for multi-dimensional conservation laws. SIAM J. Numer. Anal. 32, 687–705 (1995)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Coquel, F., LeFloch, P.G.: Convergence of finite difference schemes for conservation laws in several space dimensions. C. R. Acad. Sci. Paris Ser. I 310, 455–460 (1990)MATHMathSciNetGoogle Scholar
  26. 26.
    Coquel, F., LeFloch, P.G.: Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach. Math. Comp. 57, 169–210 (1991)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Coquel, F., LeFloch, P.G.: Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory. SIAM J. Numer. Anal. 30, 675–700 (1993)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)MATHMathSciNetGoogle Scholar
  30. 30.
    DiPerna, R.J.: Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88, 223–270 (1985)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Donatelli, D., Marcati, P.: Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems. Trans. Am. Math. Soc. 356, 2093–2121 (2004)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Dubois, F., LeFloch, P.G.: Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differ. Equ. 31, 93–122 (1988)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Ernest, J., LeFloch, P.G., Mishra, S.: Schemes with well-controlled dissipation (WCD). I. SIAM J. Numer. Anal. (2014)Google Scholar
  34. 34.
    Eymard, R., Gallouët, T., Herbin, R.: The finite volume method. In: Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)Google Scholar
  35. 35.
    Greenberg, J.M., Leroux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)MATHMathSciNetGoogle Scholar
  36. 36.
    Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Hayes, B.T., LeFloch, P.G.: Nonclassical shocks and kinetic relations: finite difference schemes. SIAM J. Numer. Anal. 35, 2169–2194 (1998)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Hou, T.Y., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62, 497–530 (1994)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Jin, S., Xin, Z.: The relaxation scheme for systems of conservation laws in arbitrary space dimension. Commun. Pure Appl. Math. 45, 235–276 (1995)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Kröner, D.: Finite volume schemes in multidimensions. In: Numerical Analysis 1997 (Dundee). Pitman Research Notes in Mathematics Series, vol. 380, pp. 179–192. Longman, Harlow (1998)Google Scholar
  41. 41.
    Kröner, D., Noelle, S., Rokyta, M.: Convergence of higher-order upwind finite volume schemes on unstructured grids for scalar conservation laws with several space dimensions. Numer. Math. 71, 527–560 (1995)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Kruzkov, S.: First-order quasilinear equations with several space variables. Math. USSR Sb. 10, 217–243 (1970)CrossRefGoogle Scholar
  43. 43.
    Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. In: Regional Conference Series in Applied Mathematics, vol. 11. SIAM, Philadelphia (1973)Google Scholar
  44. 44.
    LeFloch, P.G.: An introduction to nonclassical shocks of systems of conservation laws. In: Kroner, D., Ohlberger, M., Rohde, C. (eds.) International School on Hyperbolic Problems, Freiburg, Germany, Oct. 1997. Lecture Notes on Computer Engineering, vol. 5, pp. 28–72. Springer, Berlin (1999)Google Scholar
  45. 45.
    LeFloch, P.G.: Hyperbolic systems of conservation laws: the theory of classical and nonclassical shock waves. In: Lectures in Mathematics. ETH Zürich/Birkhäuser, Basel (2002)CrossRefGoogle Scholar
  46. 46.
    LeFloch, P.G.: Hyperbolic conservation laws and spacetimes with limited regularity. In: Benzoni, S., Serre, D. (eds.) Proceedings of 11th International Conference on Hyperbolic Problems: Theory, Numerics, and Applications, pp. 679–686. ENS Lyon, 17–21 July 2006. Springer, Berlin (See arXiv:0711.0403)Google Scholar
  47. 47.
    LeFloch, P.G.: Kinetic relations for undercompressive shock waves: physical, mathematical, and numerical issues. Contemp. Math. 526, 237–272 (2010)CrossRefMathSciNetGoogle Scholar
  48. 48.
    LeFloch, P.G., Makhlof, H.: A geometry-preserving finite volume method for compressible fluids on Schwarzschild spacetime. Commun. Comput. Phys. (2014). See also ArXiv:1212.6622Google Scholar
  49. 49.
    LeFloch, P.G., Mishra, S.: Numerical methods with controled dissipation for small-scale dependent shocks. Acta Numer. (2014). See Preprint ArXiv 1312.1280Google Scholar
  50. 50.
    LeFloch, P.G., Mohamadian, M.: Why many shock wave theories are necessary: fourth-order models, kinetic functions, and equivalent equations. J. Comput. Phys. 227, 4162–4189 (2008)CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    LeFloch, P.G., Okutmustur, B.: Hyperbolic conservation laws on manifolds with limited regularity. C. R. Math. Acad. Sci. Paris 346, 539–543 (2008)CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    LeFloch, P.G., Okutmustur, B.: Hyperbolic conservation laws on spacetimes: a finite volume scheme based on differential forms. Far East J. Math. Sci. 31, 49–83 (2008)MATHMathSciNetGoogle Scholar
  53. 53.
    LeFloch, P.G., Rohde, C.: High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37, 2023–2060 (2000)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    LeFloch, P.G., Makhlof, H., Okutmustur, B.: Relativistic Burgers equations on curved spacetimes: derivation and finite volume approximation. SIAM J. Numer. Anal. (2012, preprint). ArXiv:1206.3018Google Scholar
  55. 55.
    LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)CrossRefMATHMathSciNetGoogle Scholar
  56. 56.
    LeVeque, R.J.: Finite volume methods for hyperbolic problems. In: Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  57. 57.
    Marcati, P.: Approximate solutions to conservation laws via convective parabolic equations. Commun. Partial Differ. Equ. 13, 321–344 (1988)CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    Marcati, P., Milani, A.: The one-dimensional Darcy’s law as the limit of a compressible Euler flow. J. Differ. Equ. 84, 129–146 (1990)CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    Marcati, P., Rubino, B.: Hyperbolic to parabolic relaxation theory for quasilinear first order systems. J. Differ. Equ. 162, 359–399 (2000)CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    Russo, G.: Central schemes for conservation laws with application to shallow water equations. In: Rionero, S., Romano, G. (eds.) Trends Applied Mathematics and Mechanics, STAMM 2002, pp. 225–246. Springer, Italia SRL (2005)Google Scholar
  62. 62.
    Russo, G.: High-order shock-capturing schemes for balance laws. In: Numerical Solutions of Partial Differential Equations. Advanced Courses in Mathematics, CRM Barcelona, pp. 59–147. Birkhäuser, Basel (2009)Google Scholar
  63. 63.
    Russo, G., Khe, A.: High-order well-balanced schemes for systems of balance laws. In: Hyperbolic Problems: Theory, Numerics and Applications. Proceedings of Symposia in Applied Mathematics, Part 2, vol. 67, pp. 919–928. American Mathematical Society, Providence (2009)Google Scholar
  64. 64.
    Szepessy, S.: Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math. Comput. 53, 527–545 (1989)CrossRefMATHMathSciNetGoogle Scholar
  65. 65.
    Tadmor, E.: Approximate solutions of nonlinear conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997). Lecture Notes in Mathematics, vol. 1697, pp. 1–149. Springer, Berlin (1998)Google Scholar
  66. 66.
    Westdickenberg, M., Noelle, S.: A new convergence proof for finite volume schemes using the kinetic formulation of conservation laws. SIAM J. Numer. Anal. 37, 742–757 (2000)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis LionsCentre National de la Recherche Scientifique and Université Pierre et Marie CurieParisFrance

Personalised recommendations