Advertisement

Interpolating Control—Robust State Feedback Case

  • Hoai-Nam Nguyen
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 451)

Abstract

In this chapter, the problem of regulating a constrained uncertain and/or time-varying linear discrete-time system to the origin subject to bounded disturbances is addressed. The robust counterpart of the interpolation technique generalizes the results presented in the previous chapter, recursive feasibility and robustly asymptotic stability being preserved. In the implicit case, depending on the shape of invariant sets, i.e. polyhedral or ellipsoidal, and depending on the objective functions, i.e. linear or quadratic, at most two LPs or one QP or one LMI problems are solved on-line at each time instant. In the explicit case, the control law is shown to be a piecewise affine function of state.

Keywords

Interpolation Scheme Vertex Control Invariant Ellipsoid Saturated Controller High Gain Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 26.
    Blanchini, F., Miani, S.: Constrained stabilization via smooth Lyapunov functions. Syst. Control Lett. 35(3), 155–163 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 59.
    Jiang, Z.P., Wang, Y.: Input-to-state stability for discrete-time nonlinear systems. Automatica 37(6), 857–869 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 74.
    Kothare, M.V., Balakrishnan, V., Morari, M.: Robust constrained model predictive control using linear matrix inequalities. Automatica 32(10), 1361–1379 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 81.
    Langson, W., Chryssochoos, I., Raković, S., Mayne, D.: Robust model predictive control using tubes. Automatica 40(1), 125–133 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 82.
    Lazar, M., de la Pena, D.M., Heemels, W., Alamo, T.: On input-to-state stability of min-max nonlinear model predictive control. Syst. Control Lett. 57(1), 39–48 (2008) CrossRefzbMATHGoogle Scholar
  6. 91.
    Marruedo, D.L., Alamo, T., Camacho, E.: Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 4, pp. 4619–4624. IEEE Press, New York (2002) Google Scholar
  7. 97.
    Olaru, S., De Doná, J.A., Seron, M., Stoican, F.: Positive invariant sets for fault tolerant multisensor control schemes. Int. J. Control 83(12), 2622–2640 (2010) CrossRefzbMATHGoogle Scholar
  8. 102.
    Pluymers, B., Rossiter, J., Suykens, J., De Moor, B.: Interpolation based MPC for LPV systems using polyhedral invariant sets. In: Proceedings of the 2005 American Control Conference, pp. 810–815. IEEE Press, New York (2005) Google Scholar
  9. 105.
    Rakovic, S.V., Kerrigan, E.C., Kouramas, K.I., Mayne, D.Q.: Invariant approximations of the minimal robust positively invariant set. IEEE Trans. Autom. Control 50(3), 406–410 (2005) MathSciNetCrossRefGoogle Scholar
  10. 120.
    Sontag, E.D., Wang, Y.: On characterizations of the input-to-state stability property. Syst. Control Lett. 24(5), 351–359 (1995) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hoai-Nam Nguyen
    • 1
  1. 1.Technion—Israel Institute of TechnologyHaifaIsrael

Personalised recommendations