Advertisement

Abstract

The first aim of this chapter is to briefly review some of the set families used in control and to comment on the strengths and weaknesses of each of them. The tools of choice throughout the manuscript will be ellipsoidal and polyhedral sets due to their combination of numerical applicability and flexibility in the representation of generic convex sets. After the geometrical nomenclature, the concept of robustly invariant and robustly controlled invariant sets are introduced. Some algorithms are proposed for computing such sets. The chapter ends with the problem of estimating the domain of attraction for uncertain and/or time-varying linear discrete-time systems with saturated input.

Keywords

Linear Matrix Inequality Saturation Function Linear Controller Saturated Input Linear Matrix Inequality Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 5.
    Alamo, T., Cepeda, A., Limon, D.: Improved computation of ellipsoidal invariant sets for saturated control systems. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference, CDC-ECC’05, pp. 6216–6221. IEEE Press, New York (2005) Google Scholar
  2. 6.
    Alamo, T., Cepeda, A., Limon, D., Camacho, E.: Estimation of the domain of attraction for saturated discrete-time systems. Int. J. Inf. Syst. Sci. 37(8), 575–583 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 9.
    Aubin, J.P.: Viability Theory. Springer, Berlin (2009) CrossRefzbMATHGoogle Scholar
  4. 12.
    Balas, E.: Projection with a minimal system of inequalities. Comput. Optim. Appl. 10(2), 189–193 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 22.
    Bitsoris, G.: Positively invariant polyhedral sets of discrete-time linear systems. Int. J. Control 47(6), 1713–1726 (1988) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 23.
    Blanchini, F.: Nonquadratic Lyapunov functions for robust control. Automatica 31(3), 451–461 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 24.
    Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 25.
    Blanchini, F., Miani, S.: On the transient estimate for linear systems with time-varying uncertain parameters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 43(7), 592–596 (1996) MathSciNetCrossRefGoogle Scholar
  9. 27.
    Blanchini, F., Miani, S.: Stabilization of LPV systems: state feedback, state estimation and duality. In: Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 2, pp. 1492–1497. IEEE Press, New York (2003) Google Scholar
  10. 28.
    Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. Birkhäuser, Boston (2007) Google Scholar
  11. 29.
    Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. Springer, Berlin (2008) zbMATHGoogle Scholar
  12. 31.
    Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, Cambridge (2004) CrossRefzbMATHGoogle Scholar
  13. 32.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, vol. 15. Society for Industrial Mathematics, Philadelphia (1994) CrossRefzbMATHGoogle Scholar
  14. 33.
    Bronstein, E.: Approximation of convex sets by polytopes. J. Math. Sci. 153(6), 727–762 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 38.
    Cwikel, M., Gutman, P.O.: Convergence of an algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states. IEEE Trans. Autom. Control 31(5), 457–459 (1986) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 39.
    Dantzig, G.B.: Fourier-Motzkin elimination and its dual. Technical report, DTIC Document (1972) Google Scholar
  17. 41.
    Fukuda, K.: CDD/CDD+ Reference Manual. Institute for Operations Research ETH-Zentrum, ETH-Zentrum (1997) Google Scholar
  18. 42.
    Fukuda, K.: Frequently asked questions in polyhedral computation. Report, ETH, Zürich (2000) http://www.ifor.math.ethz.ch/fukuda/polyfaq/polyfaq.html
  19. 43.
    Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: The LMI control toolbox. In: Proceedings of the 33rd IEEE Conference on Decision and Control, vol. 3, pp. 2038–2041. IEEE Press, New York (1994) Google Scholar
  20. 46.
    Gilbert, E.G., Tan, K.T.: Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans. Autom. Control 36(9), 1008–1020 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 49.
    Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming. Available at http://cvxr.com/cvx/ Google Scholar
  22. 51.
    Grünbaum, B.: Convex Polytopes, vol. 221. Springer, Berlin (2003) CrossRefGoogle Scholar
  23. 54.
    Gutman, P.O., Cwikel, M.: An algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states. IEEE Trans. Autom. Control 32(3), 251–254 (1987) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 55.
    Hu, T., Lin, Z.: Control Systems with Actuator Saturation: Analysis and Design. Birkhäuser, Basel (2001) CrossRefGoogle Scholar
  25. 57.
    Hu, T., Lin, Z., Chen, B.M.: Analysis and design for discrete-time linear systems subject to actuator saturation. Syst. Control Lett. 45(2), 97–112 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 58.
    Hu, T., Lin, Z., Chen, B.M.: An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica 38(2), 351–359 (2002) CrossRefzbMATHGoogle Scholar
  27. 64.
    Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Equality Set Projection: A New Algorithm for the Projection of Polytopes in Halfspace Representation. University of Cambridge, Dept. of Engineering, Cambridge (2004) Google Scholar
  28. 66.
    Keerthi, S., Sridharan, K.: Solution of parametrized linear inequalities by Fourier elimination and its applications. J. Optim. Theory Appl. 65(1), 161–169 (1990) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 67.
    Kerrigan, E.C.: Robust constraint satisfaction: invariant sets and predictive control. Department of Engineering, University of Cambridge, UK (2000) Google Scholar
  30. 68.
    Kerrigan, E.: Invariant Set Toolbox for Matlab (2003) Google Scholar
  31. 71.
    Kolmanovsky, I., Gilbert, E.G.: Theory and computation of disturbance invariant sets for discrete-time linear systems. Math. Probl. Eng. 4(4), 317–367 (1998) CrossRefzbMATHGoogle Scholar
  32. 72.
    Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis, vol. 1. Dover, New York (1999) Google Scholar
  33. 75.
    Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal toolbox (et). In: 45th IEEE Conference on Decision and Control, pp. 1498–1503. IEEE Press, New York (2006) CrossRefGoogle Scholar
  34. 76.
    Kvasnica, M., Grieder, P., Baotić, M., Morari, M.: Multi-parametric toolbox (MPT). Hybrid Syst., Comput. Control, 121–124 (2004) Google Scholar
  35. 87.
    Lofberg, J.: Yalmip: a toolbox for modeling and optimization in Matlab. In: IEEE International Symposium on Computer Aided Control Systems Design, pp. 284–289. IEEE Press, New York (2004) Google Scholar
  36. 93.
    Motzkin, T.S., Raiffa, H., Thompson, G., Thrall, R.: The Double Description Method (1953) Google Scholar
  37. 97.
    Olaru, S., De Doná, J.A., Seron, M., Stoican, F.: Positive invariant sets for fault tolerant multisensor control schemes. Int. J. Control 83(12), 2622–2640 (2010) CrossRefzbMATHGoogle Scholar
  38. 105.
    Rakovic, S.V., Kerrigan, E.C., Kouramas, K.I., Mayne, D.Q.: Invariant approximations of the minimal robust positively invariant set. IEEE Trans. Autom. Control 50(3), 406–410 (2005) MathSciNetCrossRefGoogle Scholar
  39. 106.
    Rockafellar, R.T.: Convex Analysis, vol. 28. Princeton Univ. Press, Princeton (1997) zbMATHGoogle Scholar
  40. 112.
    Scherer, C., Weiland, S.: Linear Matrix Inequalities in Control. Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands (2000) Google Scholar
  41. 121.
    Sturm, J.F.: Using Sedumi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999) MathSciNetCrossRefGoogle Scholar
  42. 125.
    Tarbouriech, S., Garcia, G., da Silva, J.M.G., Queinnec, I.: Stability and Stabilization of Linear Systems with Saturating Actuators. Springer, Berlin (2011) CrossRefzbMATHGoogle Scholar
  43. 129.
    Veres, S.: Geometric bounding toolbox (GBT) for Matlab. Official website: http://www.sysbrain.com (2003)
  44. 133.
    Ziegler, G.M.: Lectures on Polytopes. Springer, Berlin (1995) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hoai-Nam Nguyen
    • 1
  1. 1.Technion—Israel Institute of TechnologyHaifaIsrael

Personalised recommendations