Skip to main content

Estimation of Patient Specific Lumbar Spine Muscle Forces Using Multi-physical Musculoskeletal Model and Dynamic MRI

  • Conference paper
Knowledge and Systems Engineering

Abstract

Trunk muscle forces are of great interest in the diagnosis and treatment of low back pain diseases. Musculoskeletal modeling is often used to estimate muscle forces using optimization principle. Available parameterized multibody lumbar spine models used generic geometries and literature-based values leading to inaccurate muscle architecture and muscle forces not reliable for a specific case. In this present study, a multi-physical musculoskeletal model of the lumbar spine was developed from medical imaging to estimate patient specific trunk muscle forces with lumbar spine range of motions derived from dynamic MRI data in supine position. As results, a 3D patient specific musculoskeletal model was developed with 126 muscle fascicles. Maximal estimated forces of all muscle groups range from 3 to 40 N for hyperlordosis motion. The higher muscle forces were estimated in iliocostalis lumborum pars lumborum. This study has demonstrated that patient specific modeling is essential for clinical analysis of lumbar spine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.A.: Biomechanics of back pain. Acupunct. Med. 22(4), 178–188 (2004)

    Article  Google Scholar 

  2. Norris, C.M.: Spinal Stabilisation: Limiting Factors to End-range Motion in the Lumbar Spine. Physiotherapy 81(2), 64–72 (1995)

    Article  Google Scholar 

  3. Haynes, W.: New strategies in the treatment and rehabilitation of the lumbar spine. Journal of Bodywork and Movement Therapies 7(2), 117–130 (2003)

    Article  MathSciNet  Google Scholar 

  4. Périé, D., Sales De Gauzy, J., Ho Ba Tho, M.C.: Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method. Med. Biol. Eng. Comput. 40(3), 296–301 (2002)

    Article  Google Scholar 

  5. Noailly, J., Wilke, H.J., Planell, J.A., Lacroix, D.: How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process. Journal of Biomechanics 40(11), 2414–2425 (2007)

    Article  Google Scholar 

  6. Schmidt, H., Shirazi-Adl, A., Galbusera, F., Wilke, H.J.: Response analysis of the lumbar spine during regular daily activities-A finite element analysis. Journal of Biomechanics 43(10), 1849–1856 (2010)

    Article  Google Scholar 

  7. Schmidt, H., Reitmaier, S.: Is the ovine intervertebral disc a small human one?: A finite element model study. Journal of the Mechanical Behavior of Biomedical Materials 17, 229–241 (2013)

    Article  Google Scholar 

  8. Schroeder, Y., Sivan, S., Wilson, W., Merkher, Y., Huyghe, J., Maroudas, A., Baaijens, F.P.T.: Are disc pressure, stress, and osmolarity affected by intra and extra fibrillar fluid exchange? Journal of Orthopaedic Research 25, 1317–1324 (2007)

    Article  Google Scholar 

  9. Alicia, R.J., Chun-Yuh, H., Wei, Y.G.: Effect of endplate calcification and mechanical deformation on the distribution of glucose in intervertebral disc: a 3D finite element study. Computer Methods in Biomechanics and Biomedical Engineering 14(2), 195–204 (2011)

    Article  Google Scholar 

  10. Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.J.: Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22(2), 131–154 (2007)

    Article  Google Scholar 

  11. de Zee, M., Hansen, L., Wong, C., Rasmussen, J., Simonsen, E.B.: A generic detailed rigid-body lumbar spine model. Journal of Biomechanics 40(6), 1219–1227 (2007)

    Article  Google Scholar 

  12. Christophy, M., Faruk Senan, N.A., Lotz, J.C., O’Reilly, O.M.: A musculoskeletal model for the lumbar spine. Biomech. Model Mechanobiol. 11(1-2), 19–34 (2012)

    Article  Google Scholar 

  13. Han, K.S., Zander, T., Taylor, W.R., Rohlmann, A.: An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Medical Engineering and Physics 34(6), 709–716 (2012)

    Article  Google Scholar 

  14. Huynh, K.T., Gibson, I., Lu, W.F., Jagdish, B.N.: Simulating dynamics of thoracolumbar spine derived from LifeMOD under haptic forces. World Academy of Science, Engineering and Technology 64, 278–285 (2010)

    Google Scholar 

  15. Stokes, I.A.F., Gardner-Morse, M.: Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and flexible joints. J. Biomech. 28(2), 173–186 (1995)

    Article  Google Scholar 

  16. Dao, T.T., Marin, F., Pouletaut, P., Aufaure, P., Charleux, F., Ho Ba Tho, M.C.: Estimation of Accuracy of Patient Specific Musculoskeletal Modeling: Case Study on a Post-Polio Residual Paralysis Subject. Computer Method in Biomechanics and Biomedical Engineering 15 (7), 745–751 (2012)

    Article  Google Scholar 

  17. Gagnon, D., Arjmand, N., Plamondon, A., Shirazi-Adl, A., Lariviére, C.: An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine. Journal of Biomechanics 44(8), 1521–1529 (2011)

    Article  Google Scholar 

  18. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: Open-source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Transactions on Biomedical Engineering 54(11), 1940–1950 (2007)

    Article  Google Scholar 

  19. Pearcy, M.J., Bogduk, N.: Instantaneous axes of rotation of the lumbar intervertebral joints. Spine 13, 1033–1041 (1998)

    Article  Google Scholar 

  20. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. J. Biomech. 35(4), 543–548 (2002)

    Article  Google Scholar 

  21. Hill, A.V.: The heat of shortening and dynamics constants of muscles. Proc. R. Soc. Lond. B 126(843), 136–195 (1938)

    Article  Google Scholar 

  22. Schultz, A., Andersson, G., Ortengren, R., Haderspeck, K., Nachemson, A.: Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J. Bone Joint Surg. Am. 64, 713–720 (1982)

    Google Scholar 

  23. Blemker, S.S., Asakawa, D.S., Gold, G.E., Delp, S.L.: Image-based musculskeletal modeling: Applications, advances, and future opportunities. Journal of Magnetic Resonance Imaging 25, 441–451 (2007)

    Article  Google Scholar 

  24. Bensamoun, S.F., Dao, T.T., Charleux, F., Ho Ba Tho, M.C.: Calculation of in vivo muscle forces derived from MR elastography. Journal of Biomechanics 45(1), S489 (2012)

    Google Scholar 

  25. Buchanan, T.S., Lloyd, D.G., Manal, K., Besier, T.F.: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. Journal of Applied Biomechanics 20(4), 367–395 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dao, T.T. et al. (2014). Estimation of Patient Specific Lumbar Spine Muscle Forces Using Multi-physical Musculoskeletal Model and Dynamic MRI. In: Huynh, V., Denoeux, T., Tran, D., Le, A., Pham, S. (eds) Knowledge and Systems Engineering. Advances in Intelligent Systems and Computing, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-02821-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02821-7_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02820-0

  • Online ISBN: 978-3-319-02821-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics