Skip to main content

A Ray Based Interactive Method for Direction Based Multi-objective Evolutionary Algorithm

  • Conference paper

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 245)

Abstract

Many real-world optimization problems have more than one objective (and these objectives are often conflicting). In most cases, there is no single solution being optimized with regards to all objectives. Deal with such problems, Multi- Objective Evolutionary Algorithms (MOEAs) have shown a great potential. There has been a popular trend in getting suitable solutions and increasing the convergence ofMOEAs by considering by Decision Makers (DM) during the optimization process (interacting with DM) for checking, analyzing the results and giving the preference.

In this paper, we propose an interactive method for DMEA, a direction-based MOEA for demonstration of concept. In DMEA, the authors used an explicit niching operator with a system of rays which divide the space evenly for the selection of non-dominated solutions to fill the archive and the next generation. We found that, by using the system of rays with a niching operator, solutions will be convergence to the Pareto Front via the corresponding to the distribution of rays in objective space. By this reason, we proposed an interactive method using set of rays which are generated from given reference points by DM. These rays replace current original rays in objective space. Based on the new distribution of rays, a niching is applied to control external population (the archive) and next generation for priority convergence to DM’s preferred region. We carried out a case study on several test problems and obtained quite good results.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-02821-7_17
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-02821-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wierzbicki, A.: The use of reference objectives in multi-objective optimisation. In: Proceedings of the MCDM Theory and Application. Lecture Notes in economics and mathematical systems, vol. 177, pp. 468–486 (1980)

    Google Scholar 

  2. Abbass, H.A.: An evolutionary artificial neural network approach for breast cancer diagnosis. Artificial Intelligence in Medicine 25(3), 265–281 (2002)

    CrossRef  Google Scholar 

  3. Bui, L.T., Liu, J., Bender, A., Barlow, M., Wesolkowski, S., Abbass, H.A.: Dmea: a direction-based multiobjective evolutionary algorithm. In: Memetic Computing, pp. 271–285 (2011)

    Google Scholar 

  4. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  5. Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. John Wiley and Son Ltd., New York (2001)

    Google Scholar 

  6. Deb, K., Kumar, A.: Interactive evolutionary multi-objective optimization and decision-making using reference direction method. In: GECCO 2007, pp. 781–788 (2007)

    Google Scholar 

  7. Deb, K., Sinha, A., Korhonen, P.J., Wallenius, J.: An interactive evolutionary multi-objective optimization method based on progressively approximated value functions (2010)

    Google Scholar 

  8. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: GECCO 2006: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 635–642. ACM Press, New York (2006)

    Google Scholar 

  9. Gong, M., Liu, F., Zhang, W., Jiao, L., Zhang, Q.: Interactive moea/d for multi-objective decision making. In: GECCO 2011, pp. 721–728 (2011)

    Google Scholar 

  10. Branke, J.: Consideration of partial user preferences in evolutionary multi-objective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 157–178. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  11. Talbi, E.-G., Wierzbicki, A.P., Figueira, J.R., Liefooghe, A.: A parallel multiple reference point approach for multi-objective optimization. European Journal of Operational Research 205, 390–400 (2010)

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. Nguyen, L., Bui, L.T.: A decomposition-based interactive method formulti-objective evolutionary algorithms. The Journal on Information Technologies and Communications (JITC) 2(2) (2012)

    Google Scholar 

  13. Nguyen, L., Bui, L.T.: A multi-point interactive method for multi-objective evolutionary algorithms. In: The Fourth International Conference on Knowledge and Systems Engineering (KSE 2012), Da Nang, Vietnam (July 2012)

    Google Scholar 

  14. Nguyen, L., Bui, L.T., Abbass, H.: A new niching method for the direction-based multi-objective evolutionary algorithm. In: 2013 IEEE Symposium Series on Computational Intelligence, Singapore (April 2013)

    Google Scholar 

  15. Petri, E., Kaisa, M.: Trade-off analysis approach for interactive nonlinear multiobjective optimization. OR Spectrum, 1–14 (2011)

    Google Scholar 

  16. Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J.: A preference based evolutionary algorithm for multi-objective optimization, pp. 411–436 (2009)

    Google Scholar 

  17. Belton, V., Branke, J., Eskelinen, P., Greco, S., Molina, J., Ruiz, F., Słowiński, R.: Interactive multi-objective optimization from a learning perspective. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 405–433. Springer, Heidelberg (2008), OR Spectrum

    Google Scholar 

  18. Zitzler, E., Thiele, L., Deb, K.: Comparision of multiobjective evolutionary algorithms: Emprical results. Evolutionary Computation 8(1), 173–195 (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, L., Bui, L.T. (2014). A Ray Based Interactive Method for Direction Based Multi-objective Evolutionary Algorithm. In: Huynh, V., Denoeux, T., Tran, D., Le, A., Pham, S. (eds) Knowledge and Systems Engineering. Advances in Intelligent Systems and Computing, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-02821-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02821-7_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02820-0

  • Online ISBN: 978-3-319-02821-7

  • eBook Packages: EngineeringEngineering (R0)