Two-Way Thermodynamics: Could It Really Happen?

  • L. S. SchulmanEmail author


In previous publications I have suggested that opposite thermodynamic arrows of time could coexist in our universe. This letter responds to the comments of H.D. Zeh (elsewhere in this volume).


Time’s arrows Two-time boundary conditions Causality Cosmology Quantum measurement theory 



This work was supported by the United States National Science Foundation Grant PHY 00 99471.


  1. 1.
    Albeverio, S., Blanchard, P., Drieschner, M., Paycha, S.: The direction of time: the role of reversibility/irreversibility in the study of nature, Bielefeld (2002) Google Scholar
  2. 2.
    Zeh, H.D.: Remarks on the compatibility of opposite arrows of time (2003). physics/0306083
  3. 3.
    Shakespeare, W.: Hamlet, act III, scene 1 Google Scholar
  4. 4.
    Zeh, H.D.: The Physical Basis of the Direction of Time, 1st edn. Springer, Berlin (1989) CrossRefGoogle Scholar
  5. 5.
    Schulman, L.S.: The problem of time. Book review of “The physical basis of the direction of time” by H. Dieter Zeh. Science 249, 192 (1990) CrossRefGoogle Scholar
  6. 6.
    Gold, T.: The arrow of time. Am. J. Phys. 30, 403–410 (1962) CrossRefGoogle Scholar
  7. 7.
    Schulman, L.S.: Correlating arrows of time. Phys. Rev. D 7, 2868–2874 (1973) CrossRefGoogle Scholar
  8. 8.
    Schulman, L.S.: Time’s Arrows and Quantum Measurement. Cambridge University Press, New York (1997) CrossRefGoogle Scholar
  9. 9.
    Schulman, L.S.: Opposite thermodynamic arrows of time. Phys. Rev. Lett. 83, 5419–5422 (1999) CrossRefGoogle Scholar
  10. 10.
    Schulman, L.S.: Resolution of causal paradoxes arising from opposing thermodynamic arrows of time. Phys. Lett. A 280, 239–245 (2001) CrossRefGoogle Scholar
  11. 11.
    Schulman, L.S.: Opposite thermodynamic arrows of time. In: Sheehan, D.P. (ed.) Quantum Limits to the Second Law. Am. Inst. of Phys., New York (2002) Google Scholar
  12. 12.
    Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine, 2nd edn. MIT Press, Cambridge (1961) CrossRefGoogle Scholar
  13. 13.
    Creswick, R.J.: Time-reversal and charge echo in an electron gas. Phys. Rev. Lett. 93, 100601 (2004) CrossRefGoogle Scholar
  14. 14.
    Wharton, K.B.: Aloha, Analog Science Fiction and Fact (2003) Google Scholar
  15. 15.
    Wharton, K.: Divine Intervention. Ace Books, New York (2001) Google Scholar
  16. 16.
    Schulman, L.S.: A compromised arrows of time. In: Ancona, V., Vaillant, J. (eds.) Hyperbolic Differential Operators and Related Problems, pp. 355–370. Dekker, New York (2003) Google Scholar
  17. 17.
    Schulman, L.S.: Schulman replies. Phys. Rev. Lett. 85, 897 (2000) CrossRefGoogle Scholar
  18. 18.
    Schulman, L.S.: Causality is an effect. In: Mugnai, D., Ranfagni, A., Schulman, L.S. (eds.) Time’s Arrows, Quantum Measurements and Superluminal Behavior, pp. 99–112. Consiglio Nazionale delle Ricerche (CNR), Rome (2001). cond-mat/0011507 Google Scholar
  19. 19.
    Schulman, L.S.: We know why coffee cools. Physica E 42, 269–272 (2009) Postscript CrossRefGoogle Scholar
  20. 20.
    Wheeler, J.A., Feynman, R.P.: Classical electrodynamics in terms of direct interparticle action. Rev. Mod. Phys. 21, 425–433 (1949) CrossRefGoogle Scholar
  21. 21.
    Baierlein, R.: Thermal Physics. Cambridge University Press, Cambridge (1999) CrossRefGoogle Scholar
  22. 22.
    Schulman, L.S.: Jump time and passage time: the duration of a quantum transition. In: Muga, J.G., Sala Mayato, R., Egusquiza, I.L. (eds.) Time in Quantum Mechanics, pp. 99–120. Springer, Berlin (2002) CrossRefGoogle Scholar
  23. 23.
    Vugmeister, B.E., Botina, J., Rabitz, H.: Nonstationary optimal paths and tails of prehistory probability density in multistable stochastic systems. Phys. Rev. E 55, 5338–5342 (1997) CrossRefGoogle Scholar
  24. 24.
    Vugmeister, B.E., Rabitz, H.: Cooperating with nonequilibrium fluctuations through their optimal control. Phys. Rev. E 55, 2522–2524 (1997) CrossRefGoogle Scholar
  25. 25.
    Judson, R.S., Rabitz, H.: Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500–1503 (1992) CrossRefGoogle Scholar
  26. 26.
    Dykman, M.I., Mori, E., Ross, J., Hunt, P.M.: Large fluctuations and optimal paths in chemical kinetics. J. Chem. Phys. 100, 5735–5750 (1994) CrossRefGoogle Scholar
  27. 27.
    Dykman, M.I., Luchinsky, D.G., McClintock, P.V.E., Smelyanskiy, V.N.: Corrals and critical behavior of the distribution of fluctuational paths. Phys. Rev. Lett. 77, 5229–5232 (1996) CrossRefGoogle Scholar
  28. 28.
    Palao, J.P., Kosloff, R.: Quantum computing by an optimal control algorithm for unitary transformations. Phys. Rev. Lett. 89, 188301 (2002) CrossRefGoogle Scholar
  29. 29.
    Palao, J.P., Kosloff, R.: Optimal control theory for unitary transformations. Phys. Rev. A 68, 062308 (2003) CrossRefGoogle Scholar
  30. 30.
    Schulman, L.S.: Illustration of reversed causality with remarks on experiment. J. Stat. Phys. 16, 217–231 (1977) CrossRefGoogle Scholar
  31. 31.
    Schulman, L.S.: Normal and reversed causality in a model system. Phys. Lett. A 57, 305–306 (1976) CrossRefGoogle Scholar
  32. 32.
    Schulman, L.S.: Models for intermediate time dynamics with two-time boundary conditions. Physica A 177, 373–380 (1991) CrossRefGoogle Scholar
  33. 33.
    Gell-Mann, M., Hartle, J.B.: Time symmetry and asymmetry in quantum mechanics and quantum cosmology. In: Halliwell, J.J., Pérez-Mercader, J., Zurek, W.H. (eds.) Physical Origins of Time Asymmetry, pp. 311–345. Cambridge University Press, New York (1994) Google Scholar
  34. 34.
    Zeh, H.D.: The Physical Basis of the Direction of Time, 4th edn. Springer, Berlin (2001) CrossRefGoogle Scholar
  35. 35.
    Penrose, R.: Singularities and time-asymmetry. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey. Cambridge University Press, New York (1979) Google Scholar
  36. 36.
    Penrose, R.: Big bangs, black holes and ‘time’s arrow’. In: Flood, R., Lockwood, M. (eds.) The Nature of Time. Basil Blackwell, Oxford (1986) Google Scholar
  37. 37.
    Steinhardt, P.J., Turok, N.: Cosmic evolution in a cyclic universe. Phys. Rev. D 65, 126003 (2002) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Physics DepartmentClarkson UniversityPotsdamUSA

Personalised recommendations