Geometry of Psychological Time

  • Metod SanigaEmail author


The paper reviews the most illustrative cases of the “peculiar/anomalous” experiences of time (and, to a lesser extent, also space) and discusses a simple algebraic geometrical model accounting for the most pronounced of them.


Psychopathology of time Pencils of conics Algebraic geometry 



I am very grateful to Mr. Pavol Bendík for painstaking drawing of the figures. I would like to express my cordial thanks to Miss Daniela Veverková and Mr. Peter Hahman for translating into English all the excerpts taken from journals written in German. My warm thanks are due also to Dr. Rosolino Buccheri (IASFC, Palermo) for the corresponding translation of a couple of excerpts in Italian. I am also indebted to Prof. Mark Stuckey (Elizabethtown College) for a careful proofreading of the paper. Last, but not least, I wish to express my gratitude to my wife for her continuous support and encouragement of my work. This work was supported in part by the NATO Collaborative Linkage Grant PST.CLG.976850, the NATO Advanced Research Fellowship distributed and administered by the Fonds National de la Recherche Scientifique, Belgium, and the 2001–2003 Joint Research Project of the Italian Research Council and the Slovak Academy of Sciences “The Subjective Time and its Underlying Mathematical Structure”.


  1. 1.
    Saniga, M.: Arrow of time and spatial dimensions. In: Sato, K., Suginohara, T., Sugiyama, N. (eds.) Cosmological Constant and the Evolution of the Universe, pp. 283–284. Universal Academy Press, Tokyo (1996) Google Scholar
  2. 2.
    Saniga, M.: On the transmutation and annihilation of pencil-generated space-time dimensions. In: Tifft, W.G., Cocke, W.J. (eds.) Mathematical Models of Time and Their Application to Physics and Cosmology, pp. 283–290. Kluwer Academic, Dordrecht (1996) Google Scholar
  3. 3.
    Saniga, M.: Pencils of conics: a means towards a deeper understanding of the arrow of time? Chaos, Solitons Fractals 9, 1071–1086 (1998) CrossRefGoogle Scholar
  4. 4.
    Saniga, M.: Time arrows over ground fields of an uneven characteristic. Chaos, Solitons Fractals 9, 1087–1093 (1998) CrossRefGoogle Scholar
  5. 5.
    Saniga, M.: Temporal dimension over Galois fields of characteristic two. Chaos, Solitons & Fractals 9, 1095–1104 (1998) CrossRefGoogle Scholar
  6. 6.
    Saniga, M.: On a remarkable relation between future and past over quadratic Galois fields. Chaos, Solitons Fractals 9, 1769–1771 (1998) CrossRefGoogle Scholar
  7. 7.
    Saniga, M.: Unveiling the nature of time: altered states of consciousness and pencil-generated space-times. Int. J. Transdiscipl. Stud. 2, 8–17 (1998) Google Scholar
  8. 8.
    Saniga, M.: Geometry of psycho(patho)logical space-times: a clue to resolving the enigma of time? Noetic J. 2, 265–273 (1999) Google Scholar
  9. 9.
    Saniga, M.: Algebraic geometry: a tool for resolving the enigma of time? In: Buccheri, R., Di Gesù, V., Saniga, M. (eds.) Studies on the Structure of Time: From Physics to Psycho(patho)logy, pp. 137–166. Kluwer Academic/Plenum, New York (2000) Google Scholar
  10. 10.
    Moody, R.: Life After Life, pp. 69–70. Mockingbird Books, Atlanta (1975) Google Scholar
  11. 11.
    Ring, K.: Heading Towards Omega, p. 183. Morrow, New York (1984) Google Scholar
  12. 12.
    Atwater, P.M.H.: Coming Back to Life. The After-Effects of the Near-Death Experience, Chap. 2. Dodd, Mead, New York (1988) Google Scholar
  13. 13.
    Quincey, T.: In: Confessions of an English Opium-Eater, pp. 281–282. Dent, London (1967) Google Scholar
  14. 14.
    Grof, S.: Realms of the Human Unconscious. Observations from LSD Research, p. 187. Dutton, New York (1976) Google Scholar
  15. 15.
    Ebin, D. (ed.): The Drug Experience, p. 295. Orion Press, New York (1961) Google Scholar
  16. 16.
  17. 17.
    Tellenbach, H.: Die Raumlichkeit der Melancholischen. I. Mitteilung. Nervenarzt 27, 12–18 (1956) Google Scholar
  18. 18.
    Muscatello, C.F., Giovanardi Rossi, P.: Perdita della visione mentale e patologia dell’esperienza temporale. G. Psichiatr. Neuropatol. 95, 765–788 (1967) Google Scholar
  19. 19.
    Fischer, F.: Zeitstruktur und Schizophrenie. Z. Gesamte Neurol. Psychiatr. 121, 544–574 (1929) CrossRefGoogle Scholar
  20. 20.
    Laing, R.D.: La Politica dell’Esperienza, p. 148. Feltrinelli, Milano (1968) Google Scholar
  21. 21.
    Kloos, G.: Störungen des Zeiterlebens in der endogenen Depression. Nervenarzt 11, 225–244 (1938) Google Scholar
  22. 22.
    Ciompi, L.: Über abnormes Zeiterleben bei einer Schizophrenen. Psychiatr. Neurol., Basel 142, 100–121 (1961) CrossRefGoogle Scholar
  23. 23.
    Braud, W.G.: An experience of timelessness. Except. Hum. Exp. 13( 1), 64–66 (1995) Google Scholar
  24. 24.
    Huber, G.: Akasa, der Mystische Raum, pp. 45–46. Origo, Zürich (1955) Google Scholar
  25. 25.
    Coomaraswamy, A.K.: Time and Eternity. Atribus Asiae Publishers, Ascona (1947) Google Scholar
  26. 26.
    Shallis, M.: On Time. An Investigation into Scientific Knowledge and Human Experience. Burnett Books, New York (1982) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.International Solvay Institutes for Physics and ChemistryFree University of Brussels (ULB)BrusselsBelgium
  2. 2.Astronomical Institute of the Slovak Academy of SciencesTatranská LomnicaSlovak Republic

Personalised recommendations