Advertisement

Synthetic Biology at the Limits of Science

  • Alfred Nordmann
Chapter
Part of the Risk Engineering book series (RISK)

Abstract

What happens when some of the traditional questions and concerns of the philosophy of science are brought to the non-traditional field of synthetic biology? Given that synthetic biology is a very diverse field, this might serve to highlight the many ways in which it is business as usual. However, prominent concepts and research practices of synthetic biology can be seen to confound established ideas of how knowledge is produced and validated in the sciences. By highlighting and readying for discussion the tension between alternative images of knowledge production in synthetic biology, this paper seeks to open up debate among philosophers of science, and within the diverse community of synthetic biologists. With the advance of emerging technosciences like synthetic biology what is at stake is not primarily how they might or might not change the world. At stake, first of all, are epistemic values, the ethos and authority of science, and the relation of knowledge and power. Building on ongoing discussions, the paper begins by exhibiting contested notions of understanding, rational engineering, and design. In a second step, it turns to different conceptions of biological “systems” by presenting divergent accounts of the origin of synthetic biology and of how systems biology gave rise to synthetic biology. Finally, it seeks to focus the debate on a definition of synthetic biology, according to which it builds, for constructive purposes, on achievements of technical control of biological complexity, that is, that it uses these achievements to generate, rather than reduce, complexity.

Keywords

System Biology Knowledge Production Synthetic Biology Biological Entity Rational Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adam, M. (2010). Multi-level complexities in technological development: Competing strategies for drug discovery. In M. Carrier & A. Nordmann (Eds.), Science in the context of application (pp. 67–83). Dordrecht: Springer.Google Scholar
  2. Aquinas, T. (1986). Von der Wahrheit (De veritate, quaestio I). Hamburg: Meiner.Google Scholar
  3. Benner, S., & Sismour, M. (2005). Synthetic biology. Nature Reviews Genetics, 6, 533–543. doi: 10.1038/nrg1637.CrossRefGoogle Scholar
  4. Benner, S. A., Chen, F., & Yang, Z. (2011). Synthetic biology, tinkering biology, and artificial biology: A perspective from chemistry. In P. L. Luisi & C. Chiarabelli (Eds.), Chemical synthetic biology (Vol. 69–106, pp. 372–387). Hoboken: Wiley.Google Scholar
  5. Bensaude-Vincent, B. (2009a). Les Vertiges de la technoscience: Façonner le monde atome par atome. Paris: La Découverte.Google Scholar
  6. Bensaude-Vincent, B. (2009b). Synthetic biology as a replica of synthetic chemistry? Uses and misuses of history. Biological Theory, 4(4), 314–318.CrossRefGoogle Scholar
  7. Bensaude-Vincent, B. (2009c). Biomimetic chemistry and synthetic biology: A two-way traffic across the borders. Hyle, 15, 31–46.Google Scholar
  8. Bensaude-Vincent, B. (2013a). Between the possible and the actual: Philosophical perspectives on the design of synthetic organisms. Futures, 3(2), 23–32. doi: 10.1016/j.futures.2013.02.006.CrossRefGoogle Scholar
  9. Bensaude-Vincent, B. (2013b). Discipline building in synthetic biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 44(2), 122–129. doi: 10.1016/j.shpsc.2013.03.007.CrossRefGoogle Scholar
  10. Bensaude-Vincent, B., & Simon, J. (2008). Chemistry: The impure science. London: Imperial College Press.Google Scholar
  11. Breithaupt, H. (2006). The engineer’s approach to biology. EMBO Reports, 7(1), 21–24. doi: 10.1038/sj.embor.7400607.CrossRefGoogle Scholar
  12. Bujara, M., & Panke, S. (2010). Engineering in complex systems. Current Opinion in Biotechnology, 21, 586–591. doi: 10.1016/j.copbio.2010.07.007.CrossRefGoogle Scholar
  13. Calvert, J. (2010). Synthetic biology: constructing nature? The Sociological Review, 58, 95–112. doi: 10.1111/j.1467-954X.2010.01913.x.CrossRefGoogle Scholar
  14. Canton, B., Labno, A., & Endy, D. (2008). Refinement and standardization of synthetic biological parts and devices. Nature Biotechnology, 26(7), 787–793. doi: 10.1038/nbt1413.CrossRefGoogle Scholar
  15. Check, E. (2005). Synthetic biology: Designs on life. Nature, 438(7067), 417–418. doi: 10.1038/438417a.CrossRefGoogle Scholar
  16. Cheng, A., & Lu, T. (2012). Synthetic biology: An emerging engineering discipline. Annual Review of Biomedical Engineering, 14, 155–178. doi: 10.1146/annurev-bioeng-071811-150118.CrossRefGoogle Scholar
  17. Delgado, A. (2013). DIYbio: Making things and making futures. Futures, 48, 65–73. doi: 10.1016/j.futures.2013.02.004.CrossRefGoogle Scholar
  18. Delgado, A., & Porcar, M. (2013). Designing de novo: Interdisciplinary debates in synthetic biology. Systems and Synthetic Biology, 7(1/2), 41–50. doi: 10.1007/s11693-013-9106-6.CrossRefGoogle Scholar
  19. Dyson, F. (2007). Our biotech future. New York Rev Books, 54(12).Google Scholar
  20. Editorial, Nature. (2010). Ten years of synergy. Nature, 463, 269–270. doi: 10.1038/463269b.Google Scholar
  21. Ferber, D. (2004). Synthetic biology: Microbes made to order. Science, 303(5655), 158–161.CrossRefGoogle Scholar
  22. Forman, P. (2007). The primacy of science in modernity, of technology in postmodernity, and of ideology in the history of technology. History and Technology, 23(1/2), 1–152. doi: 10.1080/07341510601092191.CrossRefGoogle Scholar
  23. Frow, E., & Calvert, J. (2013). ‘Can simple biological systems be built from standardized interchangeable parts?’ Negotiating biology and engineering in a synthetic biology competition. Engineering Studies, 5(1), 42–58. doi: 10.1080/19378629.2013.764881.CrossRefGoogle Scholar
  24. Gelfert, A. (2013). Synthetic biology between technoscience and thing knowledge. Studies in History and Philosophy of Biological and Biomedical Sciences, 44(2), 141–149. doi: 10.1016/j.shpsc.2013.03.009.CrossRefGoogle Scholar
  25. Giese, B., Koenigstein, S., Wigger, H., Schmidt, J. C., & Gleich, A. v. (2013). Rational engineering principles in synthetic biology: A framework for quantitative analysis and an initial assessment. Biological Theory, 8(4), 324–333. doi: 10.1007/s13752-013-0130-2.CrossRefGoogle Scholar
  26. Gramelsberger, G. (2013). The simulation approach in synthetic biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 44(2), 150–157. doi: 10.1016/j.shpsc.2013.03.010.CrossRefGoogle Scholar
  27. Heinemann, M., & Panke, S. (2006). Synthetic biology—putting engineering into biology. Bioinformatics, 22(22), 2790–2799. doi: 10.1093/bioinformatics/btl469.CrossRefGoogle Scholar
  28. Ideker, T., Galitski, T., & Hood, L. (2001). A new approach to decoding life: Systems biology. Annual Review of Genomics and Human Genetics, 2, 341–372. doi: 10.1146/annurev.genom.2.1.343.CrossRefGoogle Scholar
  29. Kastenhofer, K. (2013a). Synthetic biology as understanding, control, construction, and creation? Techno-epistemic and socio-political implications of different stances in talking and doing technoscience. Futures, 48, 13–22. doi: 10.1016/j.futures.2013.02.001.CrossRefGoogle Scholar
  30. Kastenhofer, K. (2013b). Two sides of the same coin? The (techno)epistemic cultures of systems and synthetic biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 130–140. doi: 10.1016/j.shpsc.2013.03.008.CrossRefGoogle Scholar
  31. Kitano, H. (2002). Systems biology: A brief overview. Science, 295, 1662–1664. doi: 10.1126/science.1069492.CrossRefGoogle Scholar
  32. Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11), 826–837. doi: 10.1038/nrg1471.CrossRefGoogle Scholar
  33. Knuuttila, T., & Loettgers, A. (2013). Basic science through engineering: Synthetic modeling and the idea of biology-inspired engineering. Studies in History and Philosophy of Biological and Biomedical Sciences, 44(2), 158–169. doi: 10.1016/j.shpsc.2013.03.011.CrossRefGoogle Scholar
  34. Kwok, R. (2010). Five hard truths for synthetic biology. Nature, 463, 288–290. doi: 10.1038/463288a.CrossRefGoogle Scholar
  35. Lenhard, J., & Winsberg, E. (2010). Holism, entrenchment, and the future of climate model pluralism. Studies in History and Philosophy of Biological and Biomedical Sciences, 41(3), 253–262. doi: 10.1016/j.shpsb.2010.07.001.Google Scholar
  36. Lewens, T. (2013). From bricolage to BioBricks™: Synthetic biology and rational design. Studies in History and Philosophy of Biological and Biomedical Sciences, 44(4), 641–648. doi: 10.1016/j.shpsc.2013.05.011.CrossRefGoogle Scholar
  37. Litcofsky, K., Afeyan, R., Krom, R., Khalil, A., & Collins, J. (2012). Iterative plug-and-play methodology for constructing and modifying synthetic gene networks. Nature Methods, 9(11), 1077–1080. doi: 10.1038/nmeth.2205.CrossRefGoogle Scholar
  38. MacLeod, M., & Nersessian, N. (2013). Building simulations from the ground up: Modeling and theory in systems biology. Philosophy of Science, 80(4), 533–556. doi: 10.1086/673209.CrossRefGoogle Scholar
  39. Mast, C., Möller, F., & Braun, D. (2013). Lebendiges Nichtgleichgewicht: Unter welchen physikalischen Randbedingungen kann Leben entstehe? Physik Journal, 12(10), 29–35.Google Scholar
  40. Nordmann, A. (2010a). Enhancing material nature. In K. L. Kjølberg & F. Wickson (Eds.), Nano meets Macro: Social perspectives on nanoscale sciences and technologies (pp. 283–306). Singapore: Pan Stanford.CrossRefGoogle Scholar
  41. Nordmann, A. (2010b). Science in the context of technology. In M. Carrier & A. Nordmann (Eds.), Science in the context of application (pp. 467–482). Dordrecht: Springer.Google Scholar
  42. O’Malley, M. (2009). Making knowledge in synthetic biology: Design meets kludge. Biol Theory, 4(4), 378–389.CrossRefGoogle Scholar
  43. O’Malley, M. (2011). Exploration, iterativity and kludging in synthetic biology. Comptes Rendus Chimie, 14(4), 406–412. doi: 10.1016/j.crci.2010.06.021.CrossRefGoogle Scholar
  44. O’Malley, M., & Dupre, J. (2005). Fundamental issues in systems biology. BioEssays, 27(12), 1270–1276. doi: 10.1002/bies.20323.CrossRefGoogle Scholar
  45. O’Malley, M., Powell, A., Davies, J. F., & Calvert, J. (2008). Knowledge-making distinctions in synthetic biology. BioEssays, 30(1), 57–65. doi: 10.1002/bies.20664.CrossRefGoogle Scholar
  46. Rodrigo, G., Landrain, T. E., & Jaramillo, A. (2012). De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences, 109(38), 15271–15276. doi: 10.1073/pnas.1203831109.CrossRefGoogle Scholar
  47. Rollié, S., Mangold, M., & Sundmacher, K. (2012). Designing biological systems: systems engineering meets synthetic biology. Chemical Engineering Science, 69(1), 1–29. doi: 10.1016/j.ces.2011.10.068.CrossRefGoogle Scholar
  48. Royal Academy of Engineering (2009). Synthetic biology: Scope, applications and implications. London.Google Scholar
  49. Schmidt, M. (2009). Do I understand what I can create? Biosafety issues in synthetic biology. In M. Schmidt, A. Kelle, A. Ganguli-Mitra, & H. De Vriend (Eds.), Synthetic biology (pp. 81–100). Berlin: Springer.Google Scholar
  50. Schmidt, J. C. (2015). Synthetic biology as late-modern technology. In B. Giese, C. Pade, H. Wigger, A. von Gleich (Eds.), Synthetic biology: Character and impact (pp. 1–30). Berlin: Springer.Google Scholar
  51. Schummer, J. (2011). Das Gotteshandwerk. Die künstliche Herstellung von Leben im Labor. Berlin: Suhrkamp.Google Scholar
  52. Schyfter, P. (2013). How a ‘drive to make’ shapes synthetic biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44(4 Pt B), 632–640. doi: 10.1016/j.shpsc.2013.05.010.
  53. Smith, P. (2004). The body of the artisan: Art and experience in the scientific revolution. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  54. Tabor, J. (2012). Modular gene-circuit design takes two steps forward. Nature Methods, 9(11), 1061–1063. doi: 10.1038/nmeth.2217.CrossRefGoogle Scholar
  55. Tal, E. (2013). Enhancing knowledge, affording ignorance. Paper presented at the What Affordance Affords, Darmstadt, November 26.Google Scholar
  56. UK Synthetic Biology Roadmap Coordination Group (2012). A Synthetic Biology Roadmap for the UK. Swindon.Google Scholar
  57. Vico, G. (1979). Liber Metaphysicus. Munich: Fink Verlag.Google Scholar
  58. von Gleich, A., Giese, B., Königstein, S., & Schmidt, J. C. (2012). Synthetische Biologie: Revolution oder Evolution? Definition, Charakterisierung und Entwicklungsperspektiven der Synthetischen Biologie mit Fokus auf den damit verbundenen Chancen und Risiken (TAB-Gutachten). Bremen: Afortec.Google Scholar
  59. Wolkenhauer, O., & Mesarovic, M. (2005). Feedback dynamics and cell function: Why systems biology is called systems biology. Molecular BioSystems, 1, 14–16. doi: 10.1039/B502088N.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of PhilosophyUniversity of South CarolinaColumbiaUSA

Personalised recommendations