Skip to main content

Ultrasensitive In-Plane Resonant Nano-electromechanical Sensors

  • 3248 Accesses

Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST,volume 19)

Abstract

This chapter presents the design, modeling, fabrication, and characterization of in-plane resonant nano-electromechanical (NEM) sensors based on mass detection principle. The simplified NEM sensor consists of a clamped-clamped (CC) beam with two side electrodes, in-plane resonant NEM (IP-RNEM) sensor. Later, the IP-RNEM sensor is monolithically integrated with an in-plane field-effect-transistor (FET) to realize the in-plane resonant suspended gate FET (IP-RSGFET) sensor. The numerical modeling of IP-RSGFET sensor is presented using a three-dimensional finite-element-method electromechanical simulation of IP-RNEM sensor combined with a NEM-MOS hybrid circuit simulation. We investigate the impacts of the adsorbed self-assembled linker and target molecules in various configurations on the resonance frequency of the sensor that results in the mass responsivity of 0.05 zepto g/Hz for all the different functionalization schemes, which is approximately 11 orders of magnitude smaller than that of the reported value for present quartz crystal microbalance sensors. A comparison is shown for the important parameters of the current mass detection-based sensors and the proposed NEM sensors. The effects of structural modification on the high-frequency characteristics are studied numerically for various key parameters of the sensor. Further modification and numerical analysis for the IP-RSGFET sensor are conducted to improve the DC characteristics of the sensor for the consequent RF measurement. The RF characterization of the IP-RNEM sensor is successfully conducted using a down-mixing measurement technique. The outcomes of the modeling and experimental analysis provide a realistic guideline for further improvement and characterization of these ultrasensitive sensors.

Keywords

  • Coating Layer
  • Spring Stiffness
  • Back Gate
  • Suspended Beam
  • Coating Layer Thickness

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-02772-2_9
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-02772-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7
Fig. 9.8
Fig. 9.9
Fig. 9.10
Fig. 9.11
Fig. 9.12
Fig. 9.13
Fig. 9.14
Fig. 9.15
Fig. 9.16
Fig. 9.17
Fig. 9.18
Fig. 9.19
Fig. 9.20
Fig. 9.21
Fig. 9.22
Fig. 9.23
Fig. 9.24
Fig. 9.25
Fig. 9.26

References

  1. Durand, C., Casset, F., Ancey, P., Judong, F., Talbot, A., Quenouillère, R., Renaud, D., Borel, S., Florin, B., Buchaillot, L.: Silicon on nothing MEMS electromechanical resonator. Microsyst. Technol. 14, 1027–1033 (2008). doi:10.1007/s00542-007-0485-z

    CrossRef  Google Scholar 

  2. Ollier, E., Duraffourg, L., Delaye, M.T., Grange, H., Deneuville, S., Bernos, J., Dianoux, R., Marchi, F., Renaud, D., Baron, T., Andreucci, P., Robert, P.: NEMS devices for accelerometers compatible with thin SOI technology. In: 2nd IEEE int conf nano/micro engineered and molecular systems (2007)

    Google Scholar 

  3. Villarroya, M., Figueras, E., Montserrat, J., Verd, J., Teva, J., Abadal, G., Murano, F.P., Esteve, J., Barniol, N.: A platform for monolithic CMOS-MEMS integration on SOI wafers. J. Micromech. Microeng. 16, 2203–2210 (2006). doi:10.1088/0960-1317/16/10/038

    CrossRef  Google Scholar 

  4. Han, X., Wu, W., Fan, J., Yan, G., Hao, Y.: Modeling of nano-resonator testing system by lumped parameter method. In: 8th int conf solid-state and integrated circuit technology (2006)

    Google Scholar 

  5. Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006). doi:10.1021/nl052134m

    CrossRef  Google Scholar 

  6. Hassani, F.A., Cobianu, C., Armini, S., Petrescu, V., Merken, P., Tsamados, D., Ionescu, A.M., Tsuchiya, Y., Mizuta, H.: Design and analysis of an in-plane resonant nano-electro-mechanical sensor for sub-attogram-level molecular mass-detection. In: Extended abs int conf solid state devices and materials (2009)

    Google Scholar 

  7. Colinet, E., Durand, C., Duraffourg, L., Audebert, P., Dumas, G., Casset, F., Ollier, E., Ancey, P., Carpentier, J.-F., Buchaillot, L., Ionescu, A.M.: Ultra-sensitive capacitive detection based on SGMOSFET compatible with front-end CMOS process. IEEE J. Solid State Circ. 44, 247–257 (2009). doi:10.1109/JSSC.2008.2007448

    CrossRef  Google Scholar 

  8. Clenland, A.N., Roukes, M.L.: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl. Phys. Lett. 69, 2653–2655 (1996)

    CrossRef  Google Scholar 

  9. Al Khusheiny, M., Majlis, B.: Aluminum based two-port-clamped-clamped resonators. In: Proc IEEE int con semiconductor electronics (2006)

    Google Scholar 

  10. Rao, S.S.: Mechanical vibrations. Pearson education Inc, Pearson Prentice Hall, NJ (2004)

    Google Scholar 

  11. Ekinci, K.L., Huang, X.M., Roukes, M.L.: Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 84, 4469–4471 (2004). doi:10.1063/1.1755417

    CrossRef  Google Scholar 

  12. Nathanson, H.C., Newell, W.E., Wickstrom, R.A., Davis, J.R.J.: The resonant gate transistor. IEEE Trans. Electron. Dev. 14, 117–133 (1967)

    CrossRef  Google Scholar 

  13. Pacheco, S., Zurcher, P., Young, S., Weston, D., Dauksher, W.: RF MEMS resonator for CMOS back-end-of-line integration. Topical meeting silicon monolithic integrated circuits in RF systems (2004)

    Google Scholar 

  14. Bannon, F.D., Clark, J.R., Nguyen, C.T.-C.: High-Q HF microelectromechanical filters. IEEE J. Solid State Circ. 35, 512–526 (2000)

    CrossRef  Google Scholar 

  15. Lobontiu, N., Garcia, E.: Mechanics of microelectromechanical systems. Kluwer Academic Publishers, Boston (2005)

    Google Scholar 

  16. Chouvion, B.: Vibration transmission and support loss in MEMS sensors. Dissertation, University of Nottingham (2010)

    Google Scholar 

  17. Beeby, S., Ensell, G., Kraft, M., White, N.: Inertial sensors. In: MEMS mechanical sensors, Artech House, Inc, Norwood (2004)

    Google Scholar 

  18. Berny, A.: Substrate effects in squeeze film damping of lateral parallel-plate sensing MEMS structures. http://www-bsac.eecs.berkeley.edu/~pister/245/project/

  19. Brotz, J.: Damping in CMOS-MEMS resonators. Dissertation, Carnegie Mellon University (2004)

    Google Scholar 

  20. Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B. 61, 5600–5609 (2000). doi:10.1103/PhysRevB.61.5600

    CrossRef  Google Scholar 

  21. Haoa, Z., Erbil, A., Ayazi, F.: An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations. Sens. Actuator A. 109, 156–164 (2003). doi:10.1016/j.sna.2003.09.037

    CrossRef  Google Scholar 

  22. Abelé, N.: Design and fabrication of suspended-gate MOSFETs for MEMS resonator, switch and memory applications. Dissertation, Institute of Microelectronics and Microsystems (IMM) Electronics Laboratories (LEG) and Center of MicroNano Technology (CMI) (2007)

    Google Scholar 

  23. Stemme, G.: Resonant silicon sensors. J. Micromech. Microeng. 1, 113–125 (1991). doi:10.1088/0960-1317/1/2/004

    CrossRef  Google Scholar 

  24. Hsu, W.-T., Clark, J.R., Nguyen, C.T.-C.: Q-optimized lateral free-free beam micromechanical resonators. Dig tech papers 11th int conf solid-state sensors and actuators (2001)

    Google Scholar 

  25. Hassani, F.A., Cobianu, C., Armini, S., Petrescu, V., Merken, P., Tsamados, D., Ionescu, A.M., Tsuchiya, Y., Mizuta, H.: Numerical analysis of zeptogram/Hz-level mass responsivity for in-plane resonant nano-electro-mechanical sensors. Microelectron. Eng. 88, 2879–2884 (2011). doi:10.1016/j.mee.2011.03.005

    CrossRef  Google Scholar 

  26. http://www.coventor.com/

  27. Ekinci, K.L., Yang, Y.T., Roukes, M.L.: Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004). doi:10.1063/1.1642738

    CrossRef  Google Scholar 

  28. http://www.qsense.com/q-sense-e4/

  29. http://www.initium2000.com/en/products_qn.html

  30. http://www.qcmresearch.com/#/devices/passive/

  31. Feng, X.L., White, C.J., Hajimiri, A., Roukes, M.L.: A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat. Nanotechnol. 3, 342–346 (2008). doi:10.1038/nnano.2008.125

    CrossRef  Google Scholar 

  32. Peng, H.B., Chang, C.W., Aloni, S., Yuzvinsky, T.D., Zettl, A.: Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 97, 087203 (2006). doi:10.1103/PhysRevLett.97.087203

    CrossRef  Google Scholar 

  33. Feng, X.L., He, R., Yang, P., Roukes, M.L.: Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953–1959 (2007). doi:10.1021/nl0706695

    CrossRef  Google Scholar 

  34. Black, D.J., Mattzela, J., Ho, T., Wang, Y., Lew, K.-K., Redwing, J., Mayer, T.S.: Plasma-assisted oxidation for surface passivation of silicon nanowires. NSF EE REU PENN STATE Annu. Res. J. 2, 121–128 (2004)

    Google Scholar 

  35. Durand, C., Casset, F., Renaux, P., Abelé, N., Legrand, B., Renaud, D., Ollier, E., Ancey, P., Ionescu, A.M., Buchaillot, L.: In-plane silicon-on-nothing nanometer-scale resonant suspended gate MOSFET for in-IC integration perspectives. IEEE Electron. Dev. Lett. 29, 494–496 (2008). doi:10.1109/LED.2008.919781

    CrossRef  Google Scholar 

  36. Bartsch, S.T., Grogg, D., Lovera, A., Tsamados, D., Ayoz, S., Ionescu, A.M.: Resonant-body Fin-FETs with sub-nW power consumption. Int IEEE electron devices meeting (2010)

    Google Scholar 

  37. Arun, A., Campidelli, S., Filoramo, A., Derycke, V., Salet, P., Ionescu, A.M., Goffman, M.F.: SWNT array resonant gate MOS transistor. Nanotechnology 22, 1–5 (2011). doi:10.1088/0957-4484/22/5/055204

    Google Scholar 

  38. Zhu, R., Wang, D., Xiang, S., Zhou, Z., Ye, X.: Piezoelectric characterization of a single zinc oxide nanowire using a nanoelectromechanical oscillator. Nanotechnology 19, 1–5 (2008). doi:10.1088/0957-4484/19/28/285712

    Google Scholar 

  39. Ortiz-Conde, A., Garcia Sanchez, F.J., Liou, J.J., Cerdeira, A., Estrada, M., Yued, Y.: A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliab. 42, 583–596 (2002). doi:10.1016/S0026-2714(02)00027-6

    CrossRef  Google Scholar 

  40. Tsividis, Y.: Operation and modeling of the MOS transistor. McGraw-Hill, Inc., New York (1987)

    Google Scholar 

  41. http://www.silvaco.com/

  42. http://ecee.colorado.edu/~bart/book/

  43. Bartsch, S.T., Rusu, A., Ionescu, A.M.: A single active nanoelectromechanical tuning fork front-end radio-frequency receiver. Nanotechnology 23, 225501–225507 (2012). doi:10.1088/0957-4484/23/22/225501

    CrossRef  Google Scholar 

  44. Gouttenoire, V., Barois, T., Perisanu, S., Leclercq, J.L., Purcell, S.T., Vincent, P., Ayari, A.: Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: towards a nanotube cell phone. Small 6, 1060–1065 (2010). doi:10.1002/smll.200901984

    CrossRef  Google Scholar 

  45. Bartsch, S.T., Dupré, C., Ollier, E., Ionescu, M.A.: Resonant-body silicon nanowire field effect transistor without junctions. Int. IEEE electron devices meeting (2012)

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by EUFP7 project NEMSIC (hybrid nano-electromechanical/integrated circuit systems for sensing and power management applications). The authors sincerely acknowledge Dr. Cecilia Dupré and Dr. Eric Ollier (CEA-Léti), Dr. Dimitrios Tsamados (Synopsys), Mr. Sebastian T. Bartsch (EPFL), Dr. Cornel Cobianu (Honeywell Romania), and Dr. Silvia Armini and Dr. Vlamidir Cherman (IMEC-BE) for their invaluable contribution and discussion throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faezeh Arab Hassani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hassani, F.A., Tsuchiya, Y., Ionescu, A.M., Mizuta, H. (2013). Ultrasensitive In-Plane Resonant Nano-electromechanical Sensors. In: Li, S., Wu, J., Wang, Z., Jiang, Y. (eds) Nanoscale Sensors. Lecture Notes in Nanoscale Science and Technology, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-02772-2_9

Download citation