Abstract
This chapter presents the design, modeling, fabrication, and characterization of in-plane resonant nano-electromechanical (NEM) sensors based on mass detection principle. The simplified NEM sensor consists of a clamped-clamped (CC) beam with two side electrodes, in-plane resonant NEM (IP-RNEM) sensor. Later, the IP-RNEM sensor is monolithically integrated with an in-plane field-effect-transistor (FET) to realize the in-plane resonant suspended gate FET (IP-RSGFET) sensor. The numerical modeling of IP-RSGFET sensor is presented using a three-dimensional finite-element-method electromechanical simulation of IP-RNEM sensor combined with a NEM-MOS hybrid circuit simulation. We investigate the impacts of the adsorbed self-assembled linker and target molecules in various configurations on the resonance frequency of the sensor that results in the mass responsivity of 0.05 zepto g/Hz for all the different functionalization schemes, which is approximately 11 orders of magnitude smaller than that of the reported value for present quartz crystal microbalance sensors. A comparison is shown for the important parameters of the current mass detection-based sensors and the proposed NEM sensors. The effects of structural modification on the high-frequency characteristics are studied numerically for various key parameters of the sensor. Further modification and numerical analysis for the IP-RSGFET sensor are conducted to improve the DC characteristics of the sensor for the consequent RF measurement. The RF characterization of the IP-RNEM sensor is successfully conducted using a down-mixing measurement technique. The outcomes of the modeling and experimental analysis provide a realistic guideline for further improvement and characterization of these ultrasensitive sensors.
Keywords
- Coating Layer
- Spring Stiffness
- Back Gate
- Suspended Beam
- Coating Layer Thickness
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options


























References
Durand, C., Casset, F., Ancey, P., Judong, F., Talbot, A., Quenouillère, R., Renaud, D., Borel, S., Florin, B., Buchaillot, L.: Silicon on nothing MEMS electromechanical resonator. Microsyst. Technol. 14, 1027–1033 (2008). doi:10.1007/s00542-007-0485-z
Ollier, E., Duraffourg, L., Delaye, M.T., Grange, H., Deneuville, S., Bernos, J., Dianoux, R., Marchi, F., Renaud, D., Baron, T., Andreucci, P., Robert, P.: NEMS devices for accelerometers compatible with thin SOI technology. In: 2nd IEEE int conf nano/micro engineered and molecular systems (2007)
Villarroya, M., Figueras, E., Montserrat, J., Verd, J., Teva, J., Abadal, G., Murano, F.P., Esteve, J., Barniol, N.: A platform for monolithic CMOS-MEMS integration on SOI wafers. J. Micromech. Microeng. 16, 2203–2210 (2006). doi:10.1088/0960-1317/16/10/038
Han, X., Wu, W., Fan, J., Yan, G., Hao, Y.: Modeling of nano-resonator testing system by lumped parameter method. In: 8th int conf solid-state and integrated circuit technology (2006)
Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006). doi:10.1021/nl052134m
Hassani, F.A., Cobianu, C., Armini, S., Petrescu, V., Merken, P., Tsamados, D., Ionescu, A.M., Tsuchiya, Y., Mizuta, H.: Design and analysis of an in-plane resonant nano-electro-mechanical sensor for sub-attogram-level molecular mass-detection. In: Extended abs int conf solid state devices and materials (2009)
Colinet, E., Durand, C., Duraffourg, L., Audebert, P., Dumas, G., Casset, F., Ollier, E., Ancey, P., Carpentier, J.-F., Buchaillot, L., Ionescu, A.M.: Ultra-sensitive capacitive detection based on SGMOSFET compatible with front-end CMOS process. IEEE J. Solid State Circ. 44, 247–257 (2009). doi:10.1109/JSSC.2008.2007448
Clenland, A.N., Roukes, M.L.: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl. Phys. Lett. 69, 2653–2655 (1996)
Al Khusheiny, M., Majlis, B.: Aluminum based two-port-clamped-clamped resonators. In: Proc IEEE int con semiconductor electronics (2006)
Rao, S.S.: Mechanical vibrations. Pearson education Inc, Pearson Prentice Hall, NJ (2004)
Ekinci, K.L., Huang, X.M., Roukes, M.L.: Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 84, 4469–4471 (2004). doi:10.1063/1.1755417
Nathanson, H.C., Newell, W.E., Wickstrom, R.A., Davis, J.R.J.: The resonant gate transistor. IEEE Trans. Electron. Dev. 14, 117–133 (1967)
Pacheco, S., Zurcher, P., Young, S., Weston, D., Dauksher, W.: RF MEMS resonator for CMOS back-end-of-line integration. Topical meeting silicon monolithic integrated circuits in RF systems (2004)
Bannon, F.D., Clark, J.R., Nguyen, C.T.-C.: High-Q HF microelectromechanical filters. IEEE J. Solid State Circ. 35, 512–526 (2000)
Lobontiu, N., Garcia, E.: Mechanics of microelectromechanical systems. Kluwer Academic Publishers, Boston (2005)
Chouvion, B.: Vibration transmission and support loss in MEMS sensors. Dissertation, University of Nottingham (2010)
Beeby, S., Ensell, G., Kraft, M., White, N.: Inertial sensors. In: MEMS mechanical sensors, Artech House, Inc, Norwood (2004)
Berny, A.: Substrate effects in squeeze film damping of lateral parallel-plate sensing MEMS structures. http://www-bsac.eecs.berkeley.edu/~pister/245/project/
Brotz, J.: Damping in CMOS-MEMS resonators. Dissertation, Carnegie Mellon University (2004)
Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B. 61, 5600–5609 (2000). doi:10.1103/PhysRevB.61.5600
Haoa, Z., Erbil, A., Ayazi, F.: An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations. Sens. Actuator A. 109, 156–164 (2003). doi:10.1016/j.sna.2003.09.037
Abelé, N.: Design and fabrication of suspended-gate MOSFETs for MEMS resonator, switch and memory applications. Dissertation, Institute of Microelectronics and Microsystems (IMM) Electronics Laboratories (LEG) and Center of MicroNano Technology (CMI) (2007)
Stemme, G.: Resonant silicon sensors. J. Micromech. Microeng. 1, 113–125 (1991). doi:10.1088/0960-1317/1/2/004
Hsu, W.-T., Clark, J.R., Nguyen, C.T.-C.: Q-optimized lateral free-free beam micromechanical resonators. Dig tech papers 11th int conf solid-state sensors and actuators (2001)
Hassani, F.A., Cobianu, C., Armini, S., Petrescu, V., Merken, P., Tsamados, D., Ionescu, A.M., Tsuchiya, Y., Mizuta, H.: Numerical analysis of zeptogram/Hz-level mass responsivity for in-plane resonant nano-electro-mechanical sensors. Microelectron. Eng. 88, 2879–2884 (2011). doi:10.1016/j.mee.2011.03.005
Ekinci, K.L., Yang, Y.T., Roukes, M.L.: Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004). doi:10.1063/1.1642738
Feng, X.L., White, C.J., Hajimiri, A., Roukes, M.L.: A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat. Nanotechnol. 3, 342–346 (2008). doi:10.1038/nnano.2008.125
Peng, H.B., Chang, C.W., Aloni, S., Yuzvinsky, T.D., Zettl, A.: Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 97, 087203 (2006). doi:10.1103/PhysRevLett.97.087203
Feng, X.L., He, R., Yang, P., Roukes, M.L.: Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953–1959 (2007). doi:10.1021/nl0706695
Black, D.J., Mattzela, J., Ho, T., Wang, Y., Lew, K.-K., Redwing, J., Mayer, T.S.: Plasma-assisted oxidation for surface passivation of silicon nanowires. NSF EE REU PENN STATE Annu. Res. J. 2, 121–128 (2004)
Durand, C., Casset, F., Renaux, P., Abelé, N., Legrand, B., Renaud, D., Ollier, E., Ancey, P., Ionescu, A.M., Buchaillot, L.: In-plane silicon-on-nothing nanometer-scale resonant suspended gate MOSFET for in-IC integration perspectives. IEEE Electron. Dev. Lett. 29, 494–496 (2008). doi:10.1109/LED.2008.919781
Bartsch, S.T., Grogg, D., Lovera, A., Tsamados, D., Ayoz, S., Ionescu, A.M.: Resonant-body Fin-FETs with sub-nW power consumption. Int IEEE electron devices meeting (2010)
Arun, A., Campidelli, S., Filoramo, A., Derycke, V., Salet, P., Ionescu, A.M., Goffman, M.F.: SWNT array resonant gate MOS transistor. Nanotechnology 22, 1–5 (2011). doi:10.1088/0957-4484/22/5/055204
Zhu, R., Wang, D., Xiang, S., Zhou, Z., Ye, X.: Piezoelectric characterization of a single zinc oxide nanowire using a nanoelectromechanical oscillator. Nanotechnology 19, 1–5 (2008). doi:10.1088/0957-4484/19/28/285712
Ortiz-Conde, A., Garcia Sanchez, F.J., Liou, J.J., Cerdeira, A., Estrada, M., Yued, Y.: A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliab. 42, 583–596 (2002). doi:10.1016/S0026-2714(02)00027-6
Tsividis, Y.: Operation and modeling of the MOS transistor. McGraw-Hill, Inc., New York (1987)
Bartsch, S.T., Rusu, A., Ionescu, A.M.: A single active nanoelectromechanical tuning fork front-end radio-frequency receiver. Nanotechnology 23, 225501–225507 (2012). doi:10.1088/0957-4484/23/22/225501
Gouttenoire, V., Barois, T., Perisanu, S., Leclercq, J.L., Purcell, S.T., Vincent, P., Ayari, A.: Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: towards a nanotube cell phone. Small 6, 1060–1065 (2010). doi:10.1002/smll.200901984
Bartsch, S.T., Dupré, C., Ollier, E., Ionescu, M.A.: Resonant-body silicon nanowire field effect transistor without junctions. Int. IEEE electron devices meeting (2012)
Acknowledgments
This work is financially supported by EUFP7 project NEMSIC (hybrid nano-electromechanical/integrated circuit systems for sensing and power management applications). The authors sincerely acknowledge Dr. Cecilia Dupré and Dr. Eric Ollier (CEA-Léti), Dr. Dimitrios Tsamados (Synopsys), Mr. Sebastian T. Bartsch (EPFL), Dr. Cornel Cobianu (Honeywell Romania), and Dr. Silvia Armini and Dr. Vlamidir Cherman (IMEC-BE) for their invaluable contribution and discussion throughout the project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Hassani, F.A., Tsuchiya, Y., Ionescu, A.M., Mizuta, H. (2013). Ultrasensitive In-Plane Resonant Nano-electromechanical Sensors. In: Li, S., Wu, J., Wang, Z., Jiang, Y. (eds) Nanoscale Sensors. Lecture Notes in Nanoscale Science and Technology, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-02772-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-02772-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02771-5
Online ISBN: 978-3-319-02772-2
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)