Abstract
Biosensors based on nanowire field effect transistor (FET) have received much attention in recent years as a way to achieve ultra-sensitive and label-free sensing of molecules of biological interest. The BioFET-SIM computer model permits the analysis and interpretation of experimental sensor signals through its web-based interface www.biofetsim.org. The model also allows for predictions of the effects of changes in the experimental setup on the sensor signal. After an introduction to nanowire-based FET biosensors, this chapter reviews the theoretical basis of BioFET-SIM models describing both single and multiple charges on the analyte. Afterwards the usage of the interface and its relative command line version is briefly shown. Finally, possible applications of the BioFET-SIM model are presented. Among the possible uses of the interface, the effects on the predicted signal of pH, buffer ionic strength, analyte concentration, and analyte relative orientation on nanowire surface are illustrated. Wherever possible, a comparison to experimental data available in literature is given, displaying the potential of BioFET-SIM for interpreting experimental results.
Keywords
- Field Effect Transistor
- Debye Length
- Screening Length
- Charge Carrier Density
- Oxide Layer Thickness
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options














References
Thévenot, D.R., Toth, K., Durst, R.A., Wilson, G.S.: Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron. 16(1–2), 121 (2001). DOI 10.1016/S0956-5663(01)00115-4
Hermanson, G.T.: Bioconjugate Techniques. Academic, San Diego (1996)
Stern, E., Klemic, J.F., Routenberg, D.A., Wyrembak, P.N., Turner-Evans, D.B., Hamilton, A.D., LaVan, D.A., Fahmy, T.M., Reed, M.A.: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519 (2007). DOI 10.1038/nature05498
Vacic, A., Criscione, J.M., Rajan, N.K., Stern, E., Fahmy, T.M., Reed, M.A.: Determination of molecular configuration by Debye length modulation. J. Am. Chem. Soc. 133(35), 13886 (2011). DOI 10.1021/ja205684a
Chen, Y., Wang, X., Erramilli, S., Mohanty, P., Kalinowski, A.: Silicon-based nanoelectronic field-effect pH sensor with local gate control. Appl. Phys. Lett. 89(22), 223512 (2006). DOI 10.1063/1.2392828
Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001). DOI 10.1126/science.1062711
Gao, X.P., Zheng, G., Lieber, C.M.: Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 10(2), 547 (2009). DOI 10.1021/nl9034219
Tian, R., Regonda, S., Gao, J., Liu, Y., Hu, W.: Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors. Lab Chip 11, 1952 (2011). DOI 10.1039/C0LC00605J
Wong, I.Y., Melosh, N.A.: Directed hybridization and melting of DNA linkers using counterion-screened electric fields. Nano Lett. 9(10), 3521 (2009). DOI 10.1021/ nl901710n
Dorvel, B.R., Reddy, B., Go, J., Duarte Guevara, C., Salm, E., Alam, M.A., Bashir, R.: Silicon nanowires with high-k Hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers. ACS Nano 6(7), 6150 (2012). DOI 10.1021/nn301495k
Chang, H.K., Ishikawa, F.N., Zhang, R., Datar, R., Cote, R.J., Thompson, M.E., Zhou, C.: Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems. ACS Nano 5(12), 9883 (2011). DOI 10.1021/nn2035796
Berthing, T., Sørensen, C.B., Nygård, J., Martinez, K.L.: Applications of nanowire arrays in nanomedicine. J. Nanoneurosci. 1(1), 3 (2009). DOI 10.1166/jns.2009.001
Patolsky, F., Zheng, G., Lieber, C.M.: Nanowire-based biosensors. Anal. Chem. 78(13), 4260 (2006). DOI 10.1021/ac069419j
Shinwari, M.W., Deen, M.J., Landheer, D.: Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design. Microelectron. Reliab. 47(12), 2025 (2007). DOI 10.1016/j.microrel.2006.10.003
Curreli, M., Zhang, R., Ishikawa, F.N., Chang, H.K., Cote, R.J., Zhou, C., Thompson, M.E.: Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans. Nanotechnol. 7(6), 651 (2008). DOI 10.1109/TNANO.2006.880908
Neizvestny, I.G.: Semiconductor nanowire sensors. Russ. Microelectron. 38(4), 223 (2009). DOI 10.1134/S1063739709040015
Roy, S., Gao, Z.: Nanostructure-based electrical biosensors. Nano Today 4(4), 318 (2009). DOI 10.1016/j.nantod.2009.06.003
Nair, P.R., Alam, M.A.: Performance limits of nanobiosensors. Appl. Phys. Lett. 88(23), 233120 (2006). DOI 10.1063/1.2211310
Nair, P.R., Alam, M.A.: Screening-limited response of nanoBiosensors. Nano Lett. 8(5), 1281 (2008). DOI 10.1021/nl072593i
Nair, P.R., Alam, M.A.: Theory of “Selectivity” of label-free nanobiosensors: A geometro-physical perspective. J. Appl. Phys. 107(6), 064701 (2010). DOI 10.1063/1. 3310531
Heitzinger, C., Klimeck, G.: Computational aspects of the three-dimensional feature-scale simulation of silicon-nanowire field-effect sensors for DNA detection. J. Comput. Electron. 6, 387 (2007). DOI 10.1007/s10825-006-0139-x
Ringhofer, C., Heitzinger, C.: Multi - scale modeling and simulation of field-effect biosensors. ECS Trans. 14(1), 11 (2008). DOI 10.1149/1.2956012
Heitzinger, C., Kennell, R., Klimeck, G., Mauser, N., McLennan, M., Ringhofer, C.: Modeling and simulation of field-effect biosensors (BioFETs) and their deployment on the nanoHUB. J. Phys. Conf. Ser. 107, 012004 (2008). DOI 10.1088/1742-6596/107/ 1/012004
Chen, H., Mukherjee, S., Aluru, N.: Charge distribution on thin semiconducting silicon nanowires. Comput. Methods Appl. Mech. Eng. 197(41–42), 3366 (2008). DOI 10.1016/j.cma.2008.02.007
Heitzinger, C., Mauser, N.J., Ringhofer, C., Liu, Y., Dutton, R.W.: Proceedings of the Simulation of Semiconductor Processes and Devices (SISPAD 2009) (San Diego, CA, USA, 2009), pp. 86–90 (2009). DOI 10.1109/SISPAD.2009.5290244
Heitzinger, C., Mauser, N.J., Ringhofer, C.: Multiscale modeling of planar and nanowire field-effect biosensors. SIAM J. Appl. Math. 70(5), 1634 (2010). DOI 10.1137/080725027
Windbacher, T., Sverdlov, V., Selberherr, S.: Biomedical engineering systems and technologies. In: Fred, A., Filipe, J., Gamboa, H. (eds.) Communications in Computer and Information Science, vol. 52, pp. 85–95. Springer, Berlin (2010). DOI 10.1007/ 978-3-642-11721-3\{∖_\}6
Park, H.H., Zeng, L., Buresh, M., Wang, S., Klimeck, G., Mehrotra, S.R., Heitzinger, C., Haley, B.P.: Nanowire, NanoHUB website (2006). DOI 10254/nanohub-r1307. 8. URL http://nanohub.org/resources/1307. Accessed Mar 2013
Nair, P.R., Go, J., Landells, G.J., Pandit, T.R., Alam, M.A.: BioSensorLab, NanoHUB website (2008). DOI 10254/nanohub-r2929. 5. URL http://nanohub.org/resources/2929. Accessed Mar 2013
Medici: Two Dimensional Device Simulation Program (2003). Synopsis
Sørensen, M.H., Mortensen, N.A., Brandbyge, M.: Screening model for nanowire surface-charge sensors in liquid. Appl. Phys. Lett. 91(10), 102105 (2007). DOI 10.1063/1.2779930
De Vico, L., Sørensen, M.H., Iversen, L., Rogers, D.M., Sørensen, B.S., Brandbyge, M., Nygård, J., Martinez, K.L., Jensen, J.H.: Quantifying signal changes in nano-wire based biosensors. Nanoscale 3, 706 (2011). DOI 10.1039/C0NR00442A
De Vico, L., Iversen, L., Sørensen, M.H., Brandbyge, M., Nygård, J., Martinez, K.L., Jensen, J.H.: Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors. Nanoscale 3, 3635 (2011). DOI 10.1039/C1NR10316D
Hediger, M.R., Jensen, J.H., De Vico, L.: BioFET-SIM Web Interface: Implementation and Two Applications. PLoS One 7(10), e45379 (2012). DOI 10.1371/ journal.pone.0045379
Punzet, M., Baurecht, D., Varga, F., Karlic, H., Heitzinger, C.: Determination of surface concentrations of individual molecule-layers used in nanoscale biosensors by in situ ATR-FTIR spectroscopy. Nanoscale 4, 2431 (2012). DOI 10.1039/C2NR12038K
Hakim, M.M.A., Lombardini, M., Sun, K., Giustiniano, F., Roach, P.L., Davies, D.E., Howarth, P.H., de Planque, M.R.R., Morgan, H., Ashburn, P.: Thin film polycrystalline silicon nanowire biosensors. Nano Lett. 12(4), 1868 (2012). DOI 10.1021/nl2042276
Duan, X., Li, Y., Rajan, N., Routenberg, D., Modis, Y., Reed, M.: Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat. Nanotechnol. 7(6), 401 (2012). DOI 10.1038/nnano.2012.82
Elnathan, R., Kwiat, M., Pevzner, A., Engel, Y., Burstein, L., Khatchtourints, A., Lichtenstein, A., Kantaev, R., Patolsky, F.: Biorecognition layer engineering: Overcoming screening limitations of nanowire-based FET devices. Nano Lett. 12(10), 5245 (2012). DOI 10.1021/nl302434w
Lloret, N., Frederiksen, R.S., Møller, T.C., Rieben, N.I., Upadhyay, S., De Vico, L., Jensen, J.H., Nygård, J., Martinez, K.L.: Effects of buffer composition and dilution on nanowire field-effect biosensors. Nanotechnology 24(3), 035501 (2013). DOI 10.1088/0957-4484/24/3/035501
Magliulo, M., Mallardi, A., Mulla, M.Y., Cotrone, S., Pistillo, B.R., Favia, P., Vikholm-Lundin, I., Palazzo, G., Torsi, L.: Electrolyte-gated organic field-effect transistor sensors based on supported biotinylated phospholipid bilayer. Adv. Mater. 25(14), 2090 (2013). DOI 10.1002/adma.201203587
Hammock, M.L., Knopfmacher, O., Naab, B.D., Tok, J.B.H., Bao, Z.: Investigation of protein detection parameters using nanofunctionalized organic field-effect transistors. ACS Nano 7(5), 3970 (2013). DOI 10.1021/nn305903q
Baumgartnerth, S., Heitzinger, C., Vacic, A., Reed, M.A.: Predictive simulations and optimization of nanowire field-effect PSA sensors including screening. Nanotechnology 24(22), 225503 (2013). DOI 10.1088/0957-4484/24/22/225503
Nitzan, A., Galperin, M., Ingold, G.L., Grabert, H.: On the electrostatic potential profile in biased molecular wires. J. Chem. Phys. 117(23), 10837 (2002). DOI 10.1063/1.1522406
Liang, G.C., Ghosh, A.W., Paulsson, M., Datta, S.: Electrostatic potential profiles of molecular conductors. Phys. Rev. B 69, 115302 (2004). DOI 10.1103/PhysRevB.69. 115302
Zhang, X.G., Pantelides, S.T.: Screening in nanowires and nanocontacts: Field emission, adhesion force, and contact resistance. Nano Lett. 9(12), 4306 (2009). DOI 10.1021/nl902533n, pMID: 19845331
Sørensen, M.H.: Nanowires for chemical sensing in a liquid environment. Bachelor Thesis (2007)
Olver, F.W.J.: In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, pp. 355–436. Dover, New York (1973)
Ishikawa, F.N., Chang, H.K., Curreli, M., Liao, H.I., Olson, C.A., Chen, P.C., Zhang, R., Roberts, R.W., Sun, R., Cote, R.J., Thompson, M.E., Zhou, C.: Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano 3(5), 1219 (2009). DOI 10.1021/ nn900086c
Björk, M.T., Schmid, H., Knoch, J., Riel, H., Riess, W.: Donor deactivation in silicon nanostructures. Nat. Nanotechnol. 4(2), 103 (2009). DOI 10.1038/nnano.2008.400
Garnett, E.C., Tseng, Y.C., Khanal, D.R., Wu, J., Bokor, J., Yang, P.: Dopant profiling and surface analysis of silicon nanowires using capacitance–voltage measurements. Nat. Nanotechnol. 4(5), 311 (2009). DOI 10.1038/nnano.2009.43
Stern, E., Wagner, R., Sigworth, F.J., Breaker, R., Fahmy, T.M., Reed, M.A.: Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 7(11), 3405 (2007). DOI 10.1021/nl071792z
Nair, P.R., Alam, M.A.: Design considerations of silicon nanowire biosensors. IEEE Trans. Electron Devices 54(12), 3400 (2007). DOI 10.1109/TED.2007.909059
Yates, D.E., Levine, S., Healy, T.W.: Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. 1 70, 1807 (1974). DOI 10.1039/F19747001807
Li, H., Robertson, A.D., Jensen, J.H.: Very fast empirical prediction and rationalization of protein pK a values. Proteins Struct. Funct. Bioinforma. 61(4), 704 (2005). DOI 110.1002/prot.20660
Bas, D.C., Rogers, D.M., Jensen, J.H.: Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins Struct. Funct. Bioinforma. 73(3), 765 (2008). DOI 10.1002/prot.22102
Olsson, M.H.M., Søndergaard, C.R., Rostkowski, M., Jensen, J.H.: PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7(2), 525 (2011). DOI 10.1021/ct100578z
Ullmann, G.M., Knapp, E.W.: Electrostatic models for computing protonation and redox equilibria in proteins. Eur. Biophys. J. 28, 533 (1999). DOI 10.1007/ s002490050236
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1), 235 (2000). DOI 10.1093/nar/28.1.235
Liu, Y., Rieben, N., Iversen, L., Sørensen, B., Park, J., Nygård, J., Martinez, K.: Specific and reversible immobilization of histidine-tagged proteins on functionalized silicon nanowires. Nanotechnology 21, 245105 (2010). DOI 10.1088/0957-4484/21/24/ 245105
Pugliese, L., Coda, A., Malcovati, M., Bolognesi, M.: Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 å resolution. J. Mol. Biol. 231(3), 698 (1993). DOI 10.1006/jmbi.1993.1321
Weber, P., Ohlendorf, D., Wendoloski, J., Salemme, F.: Structural origins of high-affinity biotin binding to streptavidin. Science 243(4887), 85 (1989). DOI 10. 1126/science.2911722
Green, N.M.: Avidin-biotin technology. In: Wilchek, M., Bayer, E.A. (eds.) Methods in Enzymology, vol. 184, pp. 51–67. Academic, London (1990). DOI 10.1016/ 0076-6879(90)84259-J
Hediger, M.R.: A perspective on bionanosensor simulation & computational enzyme engineering. Ph.D. Thesis, Department of Chemistry, University of Copenhagen (2013)
The PyMOL Molecular Graphics System: Version 1.3.0 Schrödinger, LLC
Harris, L.J., Larson, S.B., Hasel, K.W., McPherson, A.: Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36(7), 1581 (1997). DOI 10.1021/ bi962514+
Macao, B., Johansson, D., Hansson, G., Härd, T.: Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat. Struct. Mol. Biol. 13(1), 71 (2005). DOI 10.1038/nsmb1035
Goodsell, D.S., Morris, G.M., Olson, A.J.: Automated docking of flexible ligands: Applications of autodock. J. Mol. Recognit. 9(1), 1 (1996). DOI 10.1002/(SICI) 1099-1352(199601)9:1⟨1::AID-JMR241⟩3.0.CO;2-6
Acknowledgements
This work has been partially funded by the Danish Research Council for Technology and Production Sciences (FTP), the Danish Natural Science Research Council (FNU), and by UNIK Synthetic Biology program, funded by the Danish Ministry for Science, Technology and Innovation. The authors acknowledge fruitful discussions with Lars Iversen, Noémie Loret, Rune S. Frederiksen, and Shivendra Upadhyay.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Hediger, M.R., Martinez, K.L., Nygård, J., Brandbyge, M., Jensen, J.H., De Vico, L. (2013). BioFET-SIM: A Tool for the Analysis and Prediction of Signal Changes in Nanowire-Based Field Effect Transistor Biosensors. In: Li, S., Wu, J., Wang, Z., Jiang, Y. (eds) Nanoscale Sensors. Lecture Notes in Nanoscale Science and Technology, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-02772-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-02772-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02771-5
Online ISBN: 978-3-319-02772-2
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)