Direct Construction of Signcryption Tag-KEM from Standard Assumptions in the Standard Model

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8233)


The paper presents a direct construction of signcryption tag-KEM under the standard DBDH and CDH assumptions in the standard model, without using strongly unforgeable signature schemes as building blocks. We prove its confidentiality and unforgeability with respect to adversarially-chosen keys where the adversary is given more advantageous attack environment than existing models in the literature. The performance of our construction is comparable to existing signcryption tag-KEM schemes.


Random Oracle Water Signature Security Parameter Direct Construction Signcryption Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new framework for hybrid encryption and A new analysis of kurosawa-desmedt KEM. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Arriaga, A., Barbosa, M., Farshim, P.: On the joint security of signature and encryption schemes under randomness reuse: Efficiency and security amplification. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 206–223. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bjørstad, T., Dent, A.W.: Building better signcryption schemes with Tag-KEMs. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 491–507. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: STOC 1998, pp. 209–218 (1998)Google Scholar
  5. 5.
    Chiba, D., Matsuda, T., Schuldt, J.C.N., Matsuura, K.: Efficient generic constructions of signcryption with insider security in the multi-user setting. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 220–237. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. on Computing 33(1), 167–226 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-secure PKE from identity-based techniques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 132–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Li, F., Shirase, M., Takagi, T.: Efficient signcryption key encapsulation without random oracles. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 47–59. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Matsuda, T., Matsuura, K., Schuldt, J.C.N.: Efficient constructions of signcryption schemes and signcryption composability. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 321–342. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Tan, C.: Insider-secure signcryption KEM/tag-KEM schemes without random oracles. In: ARES 2008, pp. 1275–1281 (2008)Google Scholar
  12. 12.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Zheng, Y.: Digital signcryption or how to achieve cost (signature & encryption) < < cost(signature) + cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Department of Computer Science and TechnologyEast China Normal UniversityChina
  2. 2.National Engineering Laboratory for Wireless SecurityXi’an University of Posts and TelecommunicationsChina
  3. 3.Institute for Interdisciplinary Information SciencesTsinghua UniversityChina
  4. 4.Department of Computer ScienceJinan UniversityChina
  5. 5.Network Emergency Response Technical Team/Coordination CenterChina

Personalised recommendations