Skip to main content

Electrochemical Solar Cells Based on Pigments

  • Chapter
  • First Online:
Book cover Management of Water Quality in Moldova

Part of the book series: Water Science and Technology Library ((WSTL,volume 69))

  • 525 Accesses

Abstract

The intensity of solar radiation at the outer edge of the atmosphere (global illumination on the ground) when the Earth is the average distance from the Sun, is called the solar constant, whose value is 1.37 * 106 ergs/s/cm2 (1.37 * 103 W/m2) or about 2 cal/min/cm2 [1]. As a result the Earth receives a total 1.56 * 1,018 1.2 * 1,017 W or kWh/year. In turn burn energy obtained from 1 kg of hydrogen is 39.4 kWh. So the solar energy which comes to Earth is equivalent to 3.9 * 1,016 kg H2. During the day-middle solar cell with an efficiency of 10 % produces electrical power 100 W/m2. Simple calculations show that the annual European solar surface could give 80 kW/m2. This quantity is equivalent to 2 kg H2 showing that total energy requirements for world could be met to cover only 0.13 % of Earth’s surface with solar panels by 10 % efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richard C Willson, Hugh S Hudson (1991) Nature 351:42–44

    Google Scholar 

  2. National Renewable Energy Laboratory (NREL). http://www.nrel.gov/pv/

  3. Energy Inform Administration (2010) Annual energy outlook 2011, December 2010. DOE/EIA-0383

    Google Scholar 

  4. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  Google Scholar 

  5. Luzzi A (ed) (2004) Photoelectrolytic production of hydrogen, Final report of annex 14, International energy agency, hydrogen implementing agreement (www.ieahia.org)

  6. Grätzel M (2001) Nature 414:338

    Google Scholar 

  7. Bandara J, Weerasinghe HC (2004) Sri Lankan J Phys 5:27–35

    Google Scholar 

  8. Gurney RW, Mott N (1938) Proc R Soc A 164:151

    Article  CAS  Google Scholar 

  9. Gerischer H, Tributsch H (1968) Ber Bunsenges Phys Chem 72:437

    CAS  Google Scholar 

  10. Memming R (1972) Photochem Photobiol 16:325

    Article  CAS  Google Scholar 

  11. Spitler M, Calvin MJ (1977) Phys Chem 67:5193

    Article  CAS  Google Scholar 

  12. Tsubomura H, Matsumura M, Nomura Y, Amamia T (1979) Nature 261:402

    Article  Google Scholar 

  13. Regan BO, Grätzel M (1991) Nature 353:737

    Article  Google Scholar 

  14. Vlachopoulos N, Liska P, Augustynski J, Gratzel MJ (1988) Am Chem Soc 110:1216

    Article  CAS  Google Scholar 

  15. Gratzel M, Kalayanasundaram K (1994) Current Sci 66:706

    CAS  Google Scholar 

  16. Nazeeruddin MK, Grätzel M (2004) In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, 9:719–758

    Google Scholar 

  17. Argazzi R, Iha NYM, Zabri H, Odobel F, Bignozzi CA (2004) Coord Chem Rev 248:1299

    Article  CAS  Google Scholar 

  18. Nazeeruddin MK, Gratzel M (2007) Struct Bond 123:113–175

    Google Scholar 

  19. Bignozzi CA, Argazzi R, Kleverlaan CJ (2000) Chem Soc Rev 29:87

    Article  CAS  Google Scholar 

  20. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, MTller E, Liska P, Vlachopolous N, Grätzel M (1993) J Am Chem Soc 115:6382

    Article  CAS  Google Scholar 

  21. Nazeeruddin MK, Pechy P, Grätzel M (1997) Chem Commun 18:1705

    Google Scholar 

  22. Grätzel M (2003) J Photochem Photobiol, C 4:145

    Article  Google Scholar 

  23. Geary EAM, Yellowlees LJ, Jack LA, Oswald IDH, Parsons S, Hirata N, Durrant JR, Robertson N (2005) Inorg Chem 44:242

    Article  CAS  Google Scholar 

  24. Hasselmann GM, Meyer GJ (1999) Z Phys Chem 212:39

    Article  CAS  Google Scholar 

  25. Alonso-Vante N, Nierengarten J-F, Sauvage J-P (1994) J Chem Soc Dalton Trans 11:1649

    Google Scholar 

  26. Jayaweera PM, Palayangoda SS, Tennakone K (2001) J Photochem Photobiol, A 140:173

    Article  CAS  Google Scholar 

  27. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, MTller E, Liska P, Vlachopolous N, Grätzel M (1993) J Am Chem Soc 115:6382–6390

    Google Scholar 

  28. Gratzel M (2005) Inorg Chem 44:6841–6851

    Article  Google Scholar 

  29. Gratzel M (2003) J Photchem Photobiolog C: Photochem Rev 4(2):145–153

    Google Scholar 

  30. http://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeServlet/FUDISS_derivate_000000002568/02_2.pdf?hosts=

  31. Sauvage J, Baltani V (1994) Chem Rev 94:993–1019

    Article  CAS  Google Scholar 

  32. Phifer CC, McMillin DR (1986) Znorg Chem 25:1329

    Article  CAS  Google Scholar 

  33. Sheikman A, Calafat V (1997) Chemistry of Heterociclic compounds 3:385–390

    Google Scholar 

  34. Midjoian OL, Shteiman BI (1960) Synthesis of heterociclic compounds 5:37. Publisher Armenia SSR, Erevan

    Google Scholar 

  35. Midjoian OL (1960) Synthesis of heterociclic compounds 5:39. Publisher Armenia SSR, Erevan

    Google Scholar 

  36. Kaslow CE, Marsh MM (1947) JOCEAH J Org Chem 12:456,457

    Google Scholar 

  37. Midjoian OL (1969) Synthesis of heterociclic compounds 8:25. Publisher Armenia SSR, Erevan

    Google Scholar 

  38. Oki AR, Morgan RJ (1995) Synth Comun 25(24):4093–4097

    Article  CAS  Google Scholar 

  39. Ciana LD, Dressick WJ, Zelewsky A (1990) J Heterocyclic Chem 27:163

    Article  Google Scholar 

  40. Inglett GE, Smith GF (1950) J Am Chem Soc 72:842

    Article  CAS  Google Scholar 

  41. Echard IF, Summers LA (1973) Astralian J Chem 26:2727

    Article  Google Scholar 

  42. Wimmer FL, Wimmer S (1983) OPPI BRIEFS 15(5):367–368

    Google Scholar 

  43. Dholakia S, Gillard R, Wimmer F (1985) Polyhedron 4(5):791–795

    Article  CAS  Google Scholar 

  44. Onozawa-Komatsuzaki N, Sugihara H (2009) Inorg Chem Comm 12:1212–1215

    Article  CAS  Google Scholar 

  45. Bass Y, Morgan RJ (1997) Synth Commun 27:2165

    Article  CAS  Google Scholar 

  46. Thummel RP (1992) Synlett 1992:1

    Google Scholar 

  47. Shklover V, Nazeeruddin M, Zakeeruddin S, Gratzel M (1997) Chem Mater 9:430–439

    Article  Google Scholar 

  48. Kay A, Grätzel M (1993) J Phys Chem 97:6272

    Article  CAS  Google Scholar 

  49. Wang X-F, Xiang J, Wang P, Koyama Y, Yanagida S, Wada Y, Hamada K, Sasaki S, Tamiaki H (2005) Chem Phys Lett 408:409

    Article  CAS  Google Scholar 

  50. Wang X-F, Matsuda A, Koyama Y, Nagae H, Sasaki S, Tamiaki H, Wada Y (2006) Chem Phys Lett 423:470

    Article  CAS  Google Scholar 

  51. Wang X-F, Koyama Y, Wada Y, Sasaki S, Tamiaki H (2007) Chem Phys Lett 439:115

    Article  CAS  Google Scholar 

  52. Wang X-F, Kitao O, Zhou H, Tamiaki H, Sasaki S (2009) Chem Commun 2009:1523

    Article  Google Scholar 

  53. Wang X-F, Tamiaki H, Wang L, Tamai N, Kitao O, Zhou H, Sasaki S (2010) Langmuir 26(9):6320

    Article  CAS  Google Scholar 

  54. Cherian S, Wamser CC (2000) J Phys Chem B 104:3624

    Article  CAS  Google Scholar 

  55. Tanaka M, Hayashi S, Eu S, Umeyama T, Matano Y, Imahori H (2007) Chem Commun 2007:2069

    Article  Google Scholar 

  56. Lee C-W, Lu H-P, Lan C-M, Huang Y-L, Liang Y-R, Yen W-N, Liu Y-C, Lin Y-S, Diau EW-G, Yeh C-Y (2009) Chem–Eur J 15:1403

    Google Scholar 

  57. Imahori H, Fukuzumi S (2004) Adv Funct Mater 14(6):525

    Article  CAS  Google Scholar 

  58. Hasobe T, Imahori H, Kamat PV, Ahn TK, Kim SK, Kim D, Fujimoto A, Hirakawa T, Fukuzumi S (2005) J Am Chem Soc 127:1216

    Article  CAS  Google Scholar 

  59. Nazeeruddin MK, Humphry-Baker R, Officer DL, Campbell WM, Burrell AK, Grätzel M (2004) Langmuir 20:6514

    Google Scholar 

  60. Wang Q, Campbell WM, Bonfantani EE, Jolley KW, Officer DL, Walsh PJ, Gordon K, Humphry-Baker R, Nazeeruddin MK, Grätzel M (2005) J Phys Chem B 109:15397

    Article  CAS  Google Scholar 

  61. Gratzel M, David L (2007) Officer. J Phys Chem C 111(32):11760–11762

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Turta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Turta, C., Duca, G., Marin, I., Sirbu, D. (2014). Electrochemical Solar Cells Based on Pigments. In: Duca, G. (eds) Management of Water Quality in Moldova. Water Science and Technology Library, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-02708-1_3

Download citation

Publish with us

Policies and ethics