Skip to main content

Modelling Human Gameplay at Pool and Countering It with an Anthropomorphic Robot

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8239)

Abstract

Interaction between robotic systems and humans becomes increasingly important in industry, the private and the public sector. A robot which plays pool against a human opponent involves challenges most human robot interaction scenarios have in common: planning in a hybrid state space, numerous uncertainties and a human counterpart with a different visual perception system. In most situations it is important that the robot predicts human decisions to react appropriately. In the following, an approach to model and counter the behavior of human pool players is described. The resulting model allows to predict the stroke a human chooses to perform as well as the outcome of that stroke. This model is combined with a probabilistic search algorithm and implemented to an anthropomorphic robot. By means of this approach the robot is able to defeat a player with better manipulation skills. Furthermore it is outlined how this approach can be applied to other non-deterministic games or to tasks in a continuous state space.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-02675-6_4
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-02675-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Demiris, Y.: Prediction of intent in robotics and multi-agent systems. Cognitive Processing 8(3), 151–158 (2007)

    CrossRef  Google Scholar 

  2. Sebanz, N., Knoblich, G.: Prediction in joint action: What, when, and where. Topics in Cognitive Science 1(2), 353–367 (2009)

    CrossRef  Google Scholar 

  3. Wang, Z., Deisenroth, M., Amor, H.B., Vogt, D., Scholkopf, B., Peters, J.: Probabilistic modeling of human movements for intention inference. In: RSS (2012)

    Google Scholar 

  4. Howard, N., U. S. D. of Defense: Intention Awareness: In Command, Control, Communications, and Intelligence (C3I). University of Oxford (2000)

    Google Scholar 

  5. Smith, M.: Running the table: An AI for computer billiards. In: 21st National Conference on Artificial Intelligence (2006)

    Google Scholar 

  6. Archibald, C., Altman, A., Shoham, Y.: Analysis of a winning computational billiards player. In: International Joint Conferences on Artificial Intelligence (2009)

    Google Scholar 

  7. Landry, J.F., Dussault, J.P.: AI optimization of a billiard player. Journal of Intelligent & Robotic Systems 50, 399–417 (2007)

    CrossRef  Google Scholar 

  8. Dussault, J.-P., Landry, J.-F.: Optimization of a billiard player – tactical play. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630, pp. 256–270. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  9. Lin, Z., Yang, J., Yang, C.: Grey decision-making for a billiard robot. In: IEEE International Conference on Systems, Man and Cybernetics (2004)

    Google Scholar 

  10. Nierhoff, T., Heunisch, K., Hirche, S.: Strategic play for a pool-playing robot. In: IEEE Workshop on Advanced Robotics and its Social Impacts, ARSO (2012)

    Google Scholar 

  11. Leckie, W., Greenspan, M.: An event-based pool physics simulator. In: van den Herik, H.J., Hsu, S.-C., Hsu, T.-s., Donkers, H.H.L.M(J.) (eds.) CG 2005. LNCS, vol. 4250, pp. 247–262. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  12. Nierhoff, T., Kourakos, O., Hirche, S.: Playing pool with a dual-armed robot. In: IEEE International Conference on Robotics and Automation, ICRA (2011)

    Google Scholar 

  13. Alian, M., Shouraki, S.: A fuzzy pool player robot with learning ability. WSEAS Transactions on Electronics 1, 422–425 (2004)

    Google Scholar 

  14. Sutton, R., Barto, A.: Reinforcement learning: An introduction. Cambridge Univ. Press (1998)

    Google Scholar 

  15. Smith, M.: Pickpocket: A computer billiards shark. In: Artificial Intelligence (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leibrandt, K., Lorenz, T., Nierhoff, T., Hirche, S. (2013). Modelling Human Gameplay at Pool and Countering It with an Anthropomorphic Robot. In: Herrmann, G., Pearson, M.J., Lenz, A., Bremner, P., Spiers, A., Leonards, U. (eds) Social Robotics. ICSR 2013. Lecture Notes in Computer Science(), vol 8239. Springer, Cham. https://doi.org/10.1007/978-3-319-02675-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02675-6_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02674-9

  • Online ISBN: 978-3-319-02675-6

  • eBook Packages: Computer ScienceComputer Science (R0)