Tuning Cost Functions for Social Navigation

  • David V. Lu
  • Daniel B. Allan
  • William D. Smart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8239)

Abstract

Human-Robot Interaction literature frequently uses Gaussian distributions within navigation costmaps to model proxemic constraints around humans. While it has proven to be effective in several cases, this approach is often hard to tune to get the desired behavior, often because of unforeseen interactions between different elements in the costmap. There is, as far as we are aware, no general strategy in the literature for how to predictably use this approach.

In this paper, we describe how the parameters for the soft constraints can affect the robot’s planned paths, and what constraints on the parameters can be introduced in order to achieve certain behaviors. In particular, we show the complex interactions between the Gaussian’s parameters and elements of the path planning algorithms, and how undesirable behavior can result from configurations exceeding certain ratios. There properties are explored using mathematical models of the paths and two sets of tests: the first using simulated costmaps, and the second using live data in conjunction with the ROS Navigation algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the 21st International Conference on Machine Learning (ICML) (2004)Google Scholar
  2. 2.
    Abbeel, P., Dolgov, D., Ng, A.Y., Thrun, S.: Apprenticeship learning for motion planning with application to parking lot navigation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1083–1090 (2008)Google Scholar
  3. 3.
    Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of robot motion: theory, algorithms, and implementations. MIT Press (2005)Google Scholar
  4. 4.
    Dautenhahn, K., Walters, M., Woods, S., Koay, K.L., Nehaniv, C.L., Sisbot, A., Alami, R., Siméon, T.: How May I Serve You?: A Robot Companion Approaching a Seated Person in a Helping Context. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, pp. 172–179. ACM (2006)Google Scholar
  5. 5.
    Ferguson, D., Likhachev, M.: Efficiently using cost maps for planning complex maneuvers. Lab Papers (GRASP), p. 20 (2008)Google Scholar
  6. 6.
    Kirby, R., Simmons, R., Forlizzi, J.: COMPANION: A Constraint-Optimizing Method for Person-Acceptable Navigation. In: Proc. RO-MAN 2009, Toyama, Japan, pp. 607–612 (2009)Google Scholar
  7. 7.
    Levine, S., Popović, Z., Koltun, V.: Feature construction for inverse reinforcement learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 1342–1350 (2010)Google Scholar
  8. 8.
    Lu, D.V., Smart, W.D.: Towards More Efficient Navigation for Robots and Humans. In: IROS (2013)Google Scholar
  9. 9.
    Mainprice, J., Akin Sisbot, E., Jaillet, L., Cortés, J., Alami, R., Siméon, T.: Planning human-aware motions using a sampling-based costmap planner. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5012–5017. IEEE (2011)Google Scholar
  10. 10.
    Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office marathon: Robust navigation in an indoor office environment. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 300–307. IEEE (2010)Google Scholar
  11. 11.
    Ng, A.Y., Russell, S.J.: Algorithms for inverse reinforcement learning. In: Proceedings of the 17th International Conference on Machine Learning (ICML), pp. 663–670 (2000)Google Scholar
  12. 12.
    Scandolo, L., Fraichard, T.: An anthropomorphic navigation scheme for dynamic scenarios. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 809–814. IEEE (2011)Google Scholar
  13. 13.
    Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A human aware mobile robot motion planner. IEEE Transactions on Robotics 23(5), 874–883 (2007)CrossRefGoogle Scholar
  14. 14.
    Svenstrup, M., Tranberg, S., Andersen, H.J., Bak, T.: Pose estimation and adaptive robot behaviour for human-robot interaction. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3571–3576. IEEE (2009)Google Scholar
  15. 15.
    Svenstrup, M., Bak, T., Andersen, H.J.: Trajectory planning for robots in dynamic human environments. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4293–4298. IEEE (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David V. Lu
    • 1
  • Daniel B. Allan
    • 2
  • William D. Smart
    • 3
  1. 1.Washington University in St. LouisSt. LouisUSA
  2. 2.Johns Hopkins UniversityBaltimoreUSA
  3. 3.Oregon State UniversityCorvallisUSA

Personalised recommendations