The Emergence of Modern Communication in Primates: A Computational Approach

  • Antonio Benítez-Burraco
  • Ana Mineiro
  • Alexandre Castro-Caldas
Chapter
Part of the Interdisciplinary Evolution Research book series (IDER, volume 1)

Abstract

It is biological structures (and their activities), and not the diverse functions they contribute to (i.e., forms of behavior), that evolve. We believe that the long-lasting controversy around when modern language appeared would benefit from a shift of focus, from “communication” to “computation.” Computation is the activity performed by specific neural devices. Computational devices (and their neurobiological correlates), but not communication devices, have a common evolutionary history. We further expect that computational devices are functionally coupled to different interface systems, thus rendering diverse kinds of outputs and eventually contributing to different functions (forms of behaviors). Multiple evidence (genetic, neurobiological, clinical, archeological, fossil, and ethological) suggest that the computational device of human language (the faculty of language in the narrow sense, after Chomsky) is an evolutionary novelty that appeared along with anatomically modern humans. Importantly, this does not preclude that other extinct hominins had “language.” It is just that the strings of symbols they were plausibly able to produce lacked certain structural properties that we can only find in extant oral or sign languages. Hominin oral “languages” (or better perhaps, “protolanguages”) could have replaced signed “languages” at some early period during hominin evolution. Nonetheless, the gestural “languages” (or better, “protolanguages”) hypothetically employed by other extinct hominids would have been less structurally complex than extant human languages are.

Keywords

Computation Hominin Language evolution Language modalities Syntax 

References

  1. Aiello LC (1998) The foundations of human language. In: Jablonski NG, Aiello LC (eds) The origin and diversification of language. California Academy of Sciences, San FranciscoGoogle Scholar
  2. Aitchison J (1998) On discontinuing the continuity–discontinuity debate. In: Hurford JR, Studdert-Kenned M, Knight C (eds) Approaches to the evolution of language. Cambridge University Press, CambridgeGoogle Scholar
  3. Alarcón M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J, Wigler M, Martin CL, Ledbetter DH, Nelson SF, Cantor RM, Geschwind DH (2008) Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 82:150–159PubMedCentralPubMedGoogle Scholar
  4. Ambrose SH (2001) Paleolithic technology and human evolution. Science 291:1748–1753PubMedGoogle Scholar
  5. Ayala F, Cela Conde C (2006) La Piedra que se volvió palabra: Las Claves Evolutivas de la Humanidad. Alianza, MadridGoogle Scholar
  6. Bakkaloglu B, O’Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM, Chawarska K, Klin A, Ercan-Sencicek AG, Stillman AA, Tanriover G, Abrahams BS, Duvall JA, Robbins EM, Geschwind DH, Biederer T, Gunel M, Lifton RP, State MW (2008) Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet 82:165–173PubMedCentralPubMedGoogle Scholar
  7. Balari S, Lorenzo G (2013) Computational phenotypes: towards an evolutionary developmental biolinguistics. Oxford University Press, OxfordGoogle Scholar
  8. Balari S, Benítez-Burraco A, Camps M, Longa VM, Lorenzo G, Uriagereka J (2011) The archaeological record speaks: bridging anthropology and linguistics. Int J Evol Biol 2011:382679PubMedCentralPubMedGoogle Scholar
  9. Balari S, Benítez-Burraco A, Longa VM, Lorenzo G (2013) The fossils of language: what are they, who has them, how did they evolve? In: Boeckx C, Grohmann K (eds) The Cambridge handbook of biolinguistics. Cambridge University Press, CambridgeGoogle Scholar
  10. Barbas H, García-Cabezas MA, Zikopoulos B (2012) Frontal-thalamic circuits associated with language. Brain Lang. doi:10.1016/j.bandl.2012.10.001 PubMedGoogle Scholar
  11. Benítez-Burraco A, Longa VM (2012) Right-handedness, lateralization and language in Neanderthals: a comment on Frayer et al (2010). J Anthropol Sci 90:187–192PubMedGoogle Scholar
  12. Berwick RC, Beckers GJL, Okanoya K, Bolhuis JJ (2012) A bird’s eye view of human language evolution. Front Evol Neurosci 4:5PubMedCentralPubMedGoogle Scholar
  13. Berwick RC (1998) Language evolution and the minimalist program: the origins of syntax. In: Hurford JR, Studdert-Kennedy M, Knight C (eds) Approaches to the evolution of language. Cambridge University Press, CambridgeGoogle Scholar
  14. Berwick RC, Okanoya K, Beckers GJL, Bolhius JJ (2011) Songs to syntax: the linguistics of birdsong. Trends Cogn Sci 15:115–121Google Scholar
  15. Bickerton D (1990) Language and species. University of Chicago Press, ChicagoGoogle Scholar
  16. Bickerton D (2009) Adam’s tongue: how humans made language, how language made humans. Macmillan, New YorkGoogle Scholar
  17. Boeckx C (2012) Homo combinans. Paper presented at the evolution of language conference 9 (EVOLANG9), Campus Plaza, Kyoto, 13–16 Mar 2012Google Scholar
  18. Bolhuis JJ, Okanoya K, Scharff C (2010) Twitter evolution: converging mechanisms in birdsong and human speech. Nat Rev Neurosci 11:747–759PubMedGoogle Scholar
  19. Brandon RN, Hornstein N (1986) From icons to symbols: some speculations on the origin of language. Biol Philos 1:169–189Google Scholar
  20. Broca P (1861) Remarques sur le siège de la faculté du langage articulé: Suivies d’une observation d’aphemie. Bull Soc Anat (Paris) 6:330–357Google Scholar
  21. Calvin WH, Bickerton D (2000) Lingua ex Machina. Reconciling Darwin and Chomsky with the human brain. MIT Press, CambridgeGoogle Scholar
  22. Camps M, Uriagereka J (2006) The Gordian knot of linguistic fossils. In: Rosselló J, Martín J (eds) The biolinguistic turn. Issues on language and biology. Universitat de Barcelona, BarcelonaGoogle Scholar
  23. Cantalupo C, Hopkins WD (2001) Asymmetric Broca’s area in great apes. Nature 414:505PubMedCentralPubMedGoogle Scholar
  24. Castro-Caldas A, Confraria A, Poppe P (1987) Non-verbal disturbances in crossed aphasia. Aphasiology 1:403–413Google Scholar
  25. Cheney DL, Seyfarth RM (1990) How monkeys see the world. Inside the mind of another species. University of Chicago Press, ChicagoGoogle Scholar
  26. Chomsky N (1956) Three models for the description of language. IEEE T Inform Theory 2:113–124Google Scholar
  27. Chomsky N (1959) On certain formal properties of grammars. Inform Control 2:137–167Google Scholar
  28. Chomsky N (1982) The Generative Enterprise. a discussion with Riny Huybregts and Henk van Riemsdijk. Foris Publications, DordrechtGoogle Scholar
  29. Chomsky N (1988) Language and problems of knowledge. MIT Press, CambridgeGoogle Scholar
  30. Chomsky N (2005) Three factors in language design. Linguistic Inq 36:1–22Google Scholar
  31. Chomsky N (2010) Some simple evo devo theses: how true might they be for language? In: Larson RK, Déprez V, Yamakido H (eds) The evolution of human language. Cambridge University Press, CambridgeGoogle Scholar
  32. Cochet H, Byrne RW (2013) Evolutionary origins of human handedness: evaluating contrasting hypotheses. Anim Cogn 16:531–542PubMedCentralPubMedGoogle Scholar
  33. Coolidge FL, Wynn T (2005) Working memory, its executive functions, and the emergence of modern thinking. Camb Archaeol J 15:5–26Google Scholar
  34. Corballis MC (2002) From hand to mouth. Princeton University Press, PrincetonGoogle Scholar
  35. Corina DP, Bellugi U, Reilly K (1999) Neuropsychological studies of linguistic and affective facial expressions in deaf signers. Lang Speech 2:307–331Google Scholar
  36. Corina DP, Poizner H, Bellugi U, Feinberg T, Dowd D, O’Grady-Batch L (1992) Dissociation between linguistic and nonlinguistic gestural systems: a case for compositionality. Brain Lang 43:414–447PubMedGoogle Scholar
  37. Corina DP, San José L, Ackerman D, Guillemin A, Braun A (2000) A comparison of neural systems underlying human action and American sign language processing. J Cogn Neurosci Suppl, pp 414–447Google Scholar
  38. Croft W (1995) Autonomy and functionalist linguistics. Language 71:490–532Google Scholar
  39. Cziko G (1995) Universal selection theory and the second Darwinian revolution. MIT Press, CambridgeGoogle Scholar
  40. d’Errico F, Henshilwood C, Vanhaeren M, van Niekerk K (2005) Nassarius kraussianus shell beads from Blombos cave: evidence for symbolic behaviour in the middle stone age. J Hum Evol 48:3–24PubMedGoogle Scholar
  41. Deacon TW (1990a) Fallacies of progression in theories of brain-size evolution. Int J Primatol 11:193–236Google Scholar
  42. Deacon TW (1990b) Problems of ontogeny and phylogeny in brain-size evolution. Int J Primatol 11:237–282Google Scholar
  43. Del Vecchio D, Murray RM, Perona P (2003) Decomposition of human motion into dynamics-based primitives with application to drawing tasks. Automatica 39:2085–2098Google Scholar
  44. Dennett DC (1995) Darwin’s dangerous idea. Simon & Schuster, New YorkGoogle Scholar
  45. Dennett DC (1996) Kinds of minds. Toward an understanding of consciousness. Basic Books, New YorkGoogle Scholar
  46. Dessalles J-L (2000) Language and hominid politics. In: Knight C, Studdert-Kennedy M, Hurford JR (eds) The evolutionary emergence of language. Cambridge University Press, CambridgeGoogle Scholar
  47. Dipietro L, Krebs HI, Fasoli SE, Volpe T, Hogan N (2009) Submovement changes characterize generalization of motor recovery after stroke. Cortex 45:318–324PubMedGoogle Scholar
  48. Donald M (1999) Preconditions for the evolution of protolanguages. In: Corballis MC, Lea SEG (eds) The descend of mind. Psychological perspectives on hominid evolution. Oxford University Press, OxfordGoogle Scholar
  49. Dunbar RI (1993) Coevolution of neocortical size, group size and language in humans. Behav Brain Sci 16:681–735Google Scholar
  50. Dunbar RI (1996) Grooming, gossip and the evolution of language. Faber and Faber, LondonGoogle Scholar
  51. Dunbar RI (1998) The social brain hypothesis. Evol Anthropol 7:178–190Google Scholar
  52. Dunbar RI, Knight C, Power C (eds) (1999) The evolution of culture. An interdisciplinary view. Edinburgh University Press, EdinburghGoogle Scholar
  53. Ebbesson SOE (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development and neuronal plasticity. Cell Tissue Res 213:179–212PubMedGoogle Scholar
  54. Eco U (1976) A Theory of Semiotics. Indiana University Press, BloomingtonGoogle Scholar
  55. Eden GF, Wood FB, Stein JF (2003) Clock drawing in developmental dyslexia. J Learn Disabil 36:216–228PubMedGoogle Scholar
  56. Emmorey K (2002) Language, cognition, and the brain: insights from sign language research. Lawrence Erlbaum and Associates, MahwahGoogle Scholar
  57. Enard W, Przeworski M, Fisher SE, Lai CSL, Wiebe V, Kitano T, Monaco AP, Pääbo S (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418:869–872PubMedGoogle Scholar
  58. Evans PD, Anderson JR, Vallender EJ, Choi SS, Lahn BT (2004) Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size. Hum Mol Genet 13:1139–1145PubMedGoogle Scholar
  59. Falchook AD, Burtis DB, Acosta LM, Salazar L, Hedna VS, Khanna AY, Heilman KM (2013) Praxis and writing in a right-hander with crossed aphasia. Neurocase. doi:10.1080/13554794.2013.770883 Google Scholar
  60. Falk D (1990) The radiator hypothesis. Behav Brain Sci 13:333–381Google Scholar
  61. Finlay B, Darlington R (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584PubMedGoogle Scholar
  62. Fisher SE, Scharff C (2009) FOXP2 as a molecular window into speech and language. Trends Genet 25:166–177PubMedGoogle Scholar
  63. Fitch WT (2002) Comparative vocal production and the evolution of speech: reinterpreting the descent of the larynx. In: Wray A (ed) The transition to language. Oxford University Press, New YorkGoogle Scholar
  64. Fitch WT, Reby D (2001) The descended larynx is not uniquely human. Roy Soc Lond B 268:1669–1675Google Scholar
  65. Flash T, Hochner B (2005) Motor primitives in vertebrates and invertebrates. Curr Opin Neurobiol 15:660–666PubMedGoogle Scholar
  66. Foundas AL, Leonard CM, Gilmore R, Fennell E, Heilman KM (1994) Planum temporale asymmetry and language dominance. Neuropsychologia 32:1225–1231PubMedGoogle Scholar
  67. Frayer DW, Fiore I, Lalueza-Fox C, Radovčić J, Bondioli L (2010) Right handed Neandertals: Vindija and beyond. J Anthropol Sci 88:113–127PubMedGoogle Scholar
  68. Gardner RA, Gardner BT, van Cantfort TE (1989) Teaching sign language to chimpanzees. State University of New York Press, New YorkGoogle Scholar
  69. Geissmann T (2000) Gibbon songs and human music from an evolutionary perspective. In: Wallin NL, Merker B, Brown S (eds) The origins of music. MIT Press, CambridgeGoogle Scholar
  70. Gentner TQ, Fenn KM, Margoliash D, Nusbaum HC (2006) Recursive syntactic pattern learning by songbirds. Nature 440:1204–1207PubMedCentralPubMedGoogle Scholar
  71. Gibson KR (1990) New perspectives on instincts and intelligence: brain size and the emergence of hierarchical mental construction skills. In: Parker ST, Gibson KR (eds) ‘Language’ and intelligence in monkeys and apes. Cambridge University Press, New YorkGoogle Scholar
  72. Gould SJ (1991) Exaptation: a crucial tool for evolutionary psychology. J Soc Issues 47:43–65Google Scholar
  73. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH, Hansen NF, Durand EY, Malaspinas AS, Jensen JD, Marques-Bonet T, Alkan C, Prüfer K, Meyer M, Burbano HA, Good JM, Schultz R, Aximu-Petri A, Butthof A, Höber B, Höffner B, Siegemund M, Weihmann A, Nusbaum C, Lander ES, Russ C, Novod N, Affourtit J, Egholm M, Verna C, Rudan P, Brajkovic D, Kucan Z, Gusic I, Doronichev VB, Golovanova LV, Lalueza-Fox C, de la Rasilla M, Fortea J, Rosas A, Schmitz RW, Johnson PL, Eichler EE, Falush D, Birney E, Mullikin JC, Slatkin M, Nielsen R, Kelso J, Lachmann M, Reich D, Pääbo S (2010) A draft sequence of the neandertal genome. Science 328:710–722PubMedGoogle Scholar
  74. Gunz P, Neubauer S, Golovanova L, Doronichev V, Maureille B, Hublin J-J (2012) A uniquely modern human pattern of endocranial development. Insights from a new cranial reconstruction of the Neanderthal newborn from Mezmaiskaya. J Hum Evol 62:300–313PubMedGoogle Scholar
  75. Hauser MD, Chomsky N, Fitch WT (2002) The faculty of language: what is it, who has it, and how did it evolve? Science 298:1569–1579PubMedGoogle Scholar
  76. Henshilwood CS, Dubreuil B (2009) Reading the artifacts: gleaning language skills from the middle stone age in southern Africa. In: Botha R, Knight C (eds) The cradle of language. Oxford University Press, New YorkGoogle Scholar
  77. Hickok G, Klima ES, Bellugi U (1996) The neurobiology of signed language and its implications for the neural basis of language. Nature 381:699–702PubMedGoogle Scholar
  78. Holloway RL (1981) Volumetric and asymmetry determinations on recent hominid endocasts: spy I and spy II, Djebel Ihroud I, and the Salé Homo erectus specimen. With some notes on Neandertal brain size. Am J Phys Anthropol 55:385–393PubMedGoogle Scholar
  79. Holloway RL (1996) Evolution of the human brain. In: Lock A, Peters CR (eds) Handbook of human symbolic evolution. Clarendon Press, OxfordGoogle Scholar
  80. Holloway RL, De La Costelareymondie MC (1982) Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:101–110PubMedGoogle Scholar
  81. Hurford JR (1992) An approach to the phylogeny of the language faculty. In: Hawkins JA, Gell-Mann M (eds) The evolution of human languages. Addison-Wesley Publishing Company, Redwood CityGoogle Scholar
  82. Ifthikharuddin SF, Shrier DA, Numaguchi Y, Tang X, Ning R, Shibata DK, Kurlan R (2000) MR volumetric analysis of the human basal ganglia: normative data. Acad Radiol 7:627–634PubMedGoogle Scholar
  83. Jerison H (1985) Animal intelligence as encephalization. In: Weiskrantz L (ed) Animal intelligence. Claredon Press, OxfordGoogle Scholar
  84. Just MA, Carpenter PA, Keller TA, Eddy WF, Thulborn B (1996) Brain activation modulated by sentence comprehension. Science 274:114–116PubMedGoogle Scholar
  85. King BJ (1996) Syntax and language origins. Lang Commun 16:193–203Google Scholar
  86. Krause J, Lalueza-Fox C, Orlando L, Enard W, Green RE, Burbano HA, Hublin J-J, Hänni C, Fortea J, de la Rasilla M, Bertranpetit J, Rosas A, Pääbo S (2007) The derived FOXP2 variant of modern humans was shared with Neandertals. Current Biol 17:1908–1912Google Scholar
  87. Kurt S, Fisher SE, Ehret G (2012) Foxp2 mutations impair auditory-motor association learning. PLoS ONE 7:e33130PubMedCentralPubMedGoogle Scholar
  88. Kyriacou A, Bruner E (2011) Brain evolution, innovation, and endocranial variations in fossil hominids. PaleoAnthropology 2011:130–143Google Scholar
  89. Levinson SC, Jaisson P (eds) (2006) Evolution and culture. MIT Press, CambridgeGoogle Scholar
  90. Lieberman P (1984) The biology and evolution of language. Harvard University Press, CambridgeGoogle Scholar
  91. Lieberman P (2002) On the nature and evolution of the neural bases of human language. Am J Phys Anthropol 45:36–62Google Scholar
  92. Liégeois F, Connelly A, Baldeweg T, Vargha-Khadem F (2008) Speaking with a single cerebral hemisphere: fMRI language organization after hemispherectomy in childhood. Brain Lang 106:195–203PubMedGoogle Scholar
  93. Lightfoot D (1999) The development of language. Acquisition, change, and evolution. Blackwell, Oxford & MaldenGoogle Scholar
  94. Lipowska M, Czaplewska E, Wysocka A (2011) Visuospatial deficits of dyslexic children. Med Sci Monit 17:CR216–CR221PubMedCentralPubMedGoogle Scholar
  95. Lorenzo G (2012) The evolution of the faculty of language. In: Boeckx C, Horno MC, Mendívil JL (eds) Language, from a biological point of view: current issues in biolinguistics. Cambridge Scholars Publishing, CambridgeGoogle Scholar
  96. Love AC (2007) Functional homology and homology of function: biological concepts and philosophical consequences. Biol Philos 22:691–708Google Scholar
  97. Makuuchi M (2010) fMRI studies on drawing revealed two new neural correlates that coincide with the language network. Cortex 46:268–269PubMedGoogle Scholar
  98. Makuuchi M, Kaminaga T, Sugishita M (2003) Both parietal lobes are involved in drawing: a functional MRI study and implications for constructional apraxia. Brain Res Cogn Brain Res 16:338–347PubMedGoogle Scholar
  99. Maricic T, Günther V, Georgiev O, Gehre S, Curlin M, Schreiweis C, Naumann R, Burbano HA, Meyer M, Lalueza-Fox C, de la Rasilla M, Rosas A, Gajovic S, Kelso J, Enard W, Schaffner W, Pääbo S (2012) A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Mol Biol Evol 30:844–852PubMedGoogle Scholar
  100. Marler P (1970) Birdsong and speech development: could there be parallels? Am Sci 58:669–673PubMedGoogle Scholar
  101. Martínez I, Arsuaga JL (2009) El origen del lenguaje: la evidencia paleontológica. Munibe Antropologia-Arkeologia 60:5–16Google Scholar
  102. Martínez I, Rosa M, Arsuaga JL, Jarabo P, Quam R, Lorenzo C, Gracia A, Carretero JM, Bermúdez de Castro JM, Carbonell E (2004) Auditory capacities in middle pleistocene humans from the Sierra de Atapuerca in Spain. PNAS 101:9976–9981PubMedCentralPubMedGoogle Scholar
  103. Mayberry RI, Squires B (2006) Sign language: acquisition. In: Brown K (ed) Encyclopedia of language and linguistics, vol 11. Elsevier, OxfordGoogle Scholar
  104. McBrearty S, Brooks AS (2000) The revolution that wasn’t: a new interpretation of the origin of modern human behavior. J Hum Evol 39:453–563PubMedGoogle Scholar
  105. Mellars P (1996a) Symbolism, language, and the Neanderthal mind. In: Mellars P, Gibson KR (eds) Modelling the early human mind. McDonald Institute for Archaeological Research, CambridgeGoogle Scholar
  106. Mellars P (1996b) The Neanderthal legacy: an archaeological perspective from Western Europe. Princeton University Press, PrincetonGoogle Scholar
  107. Mellars P (2002) Archaeology and the origins of modern humans: European and African perspectives. In: Crow TJ (ed) The speciation of modern homo sapiens. Oxford University Press, Oxford & New YorkGoogle Scholar
  108. Mellars P (2005) The impossible coincidence. A single-species model for the origins of modern human behavior. Evol Anthropol 14:12–27Google Scholar
  109. Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, Schraiber JG, Jay F, Prüfer K, de Filippo C, Sudmant PH, Alkan C, Fu Q, Do R, Rohland N, Tandon A, Siebauer M, Green RE, Bryc K, Briggs AW, Stenzel U, Dabney J, Shendure J, Kitzman J, Hammer MF, Shunkov MV, Derevianko AP, Patterson N, Andrés AM, Eichler EE, Slatkin M, Reich D, Kelso J, Pääbo S (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–226PubMedCentralPubMedGoogle Scholar
  110. Miller GF (1999) Sexual selection for cultural displays. In: Dunbar RI, Knight C, Power C (eds) The evolution of culture. Edinburgh University Press, EdinburghGoogle Scholar
  111. Mithen S (1996) The prehistory of the mind. A search for the origins of art, religion, and science. Thames & Hudson, LondonGoogle Scholar
  112. Mithen S (2006) The singing Neanderthals. The origins of music, language, mind and body. Weidenfeld & Nicolson, LondonGoogle Scholar
  113. Morris C (1946) Sings, language, and behavior. Prentice-Hall, New YorkGoogle Scholar
  114. Müller GB, Newman SA (eds) (2005) Evolutionary innovation and morphological novelty. J Exp Zool B Mol Dev Evol 304:485–486Google Scholar
  115. Murdoch BE (2010) The cerebellum and language: historical perspective and review. Cortex 46:858–868PubMedGoogle Scholar
  116. Natsopoulos D, Koutselini M, Kiosseoglou G, Koundouris F (2002) Differences in language performance in variations of lateralization. Brain Lang 82:223–240PubMedGoogle Scholar
  117. Nettle D (2003) Hand laterality and cognitive ability: a multiple regression approach. Brain Cogn 52:390–398PubMedGoogle Scholar
  118. Neville HJ, Coffey SA, Lawson DS, Fischer A, Emmorey K, Bellugi U (1997) Neural systems mediating American sign language: effects of sensory experience and age of acquisition. Brain Lang 57:285–308PubMedGoogle Scholar
  119. Neville HJ, Bavelier D, Corina D, Rauschecker J, Karni A, Lalwani A, Braun A, Clark V, Jezzard P, Turner R (1998) Cerebral organization for language in deaf and hearing subjects: biological constraints and effects of experience. PNAS 95:922–929PubMedCentralPubMedGoogle Scholar
  120. Newmeyer FJ (1998) On the supposed ‘counterfunctionality’ of universal grammar: some evolutionary implications. In: Hurford JR, Studdert-Kennedy M, Knight C (eds) Approaches to the evolution of language. Cambridge University Press, CambridgeGoogle Scholar
  121. Newport EL, Meier RP (1985) The acquisition of American Sign Language. In: Slobin D (ed) The cross-linguistic study of language acquisition. Erlbaum, Hillsdale, NJGoogle Scholar
  122. Okanoya K (2002) Sexual display as a syntactical vehicle: the evolution of syntax in birdsong and human language through sexual selection. In: Wray A (ed) The transition to language. Oxford University Press, New YorkGoogle Scholar
  123. Ouattara K, Zuberbühler K, N’goran EK, Gobert J-E, Lemasson A (2009) The alarm call system of female Campbell’s monkeys. Anim Behav 78:35–44Google Scholar
  124. Pavlidou EV, Kelly ML, Williams JM (2010) Do children with developmental dyslexia have impairments in implicit learning? Dyslexia 16:143–161PubMedGoogle Scholar
  125. Piatelli-Palmarini M (1989) Evolution, selection, and cognition: from learning to parameter setting in biology and the study of language. Cognition 31:1–44Google Scholar
  126. Piatelli-Palmarini M (1990) An ideological battle over modals and quantifiers. Behav Brain Sci 13:752–754Google Scholar
  127. Pinker S, Bloom P (1990) Natural language and natural selection. Behav Brain Sci 13:707–727Google Scholar
  128. Poeppel D, Embick D (2005) Defining the relation between linguistics and neuroscience. In: Cutler A (ed) Twenty-first century psycholinguistics: four cornerstones. Lawrence Erlbaum, HillsdaleGoogle Scholar
  129. Premack D (1971) Language in chimpanzee? Science 172:808–822PubMedGoogle Scholar
  130. Raff RA (2000) Evo-devo: the evolution of a new discipline. Nat Rev Genet 1:74–79PubMedGoogle Scholar
  131. Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TEJ (2008) The evolution of the arcuate fasciculus revealed with comparative. Nature Neurosci 11:426–428PubMedGoogle Scholar
  132. Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Neurosci 21:188–194PubMedGoogle Scholar
  133. Robins Wahlin TB, Larsson MU, Luszcz MA, Byrne GJ (2010) WAIS-R features of preclinical Huntington’s disease: implications for early detection. Dement Geriatr Cogn Disord 29:342–350PubMedGoogle Scholar
  134. Rogers J, Pullum GK (2011) Aural pattern recognition experiments and the subregular hierarchy. J Logic Lang Inf 20:329–342Google Scholar
  135. Sandler W, Lillo-Martin D (2006) Sign language and linguistic universals. Cambridge University Press, CambridgeGoogle Scholar
  136. Sandler W (2006) An overview of sign language linguistics. In: Brown K (ed) Encyclopedia of language and linguistics, vol 11. Elsevier, OxfordGoogle Scholar
  137. Savage-Rumbaugh S (1986) Ape language: from conditioned response to symbol. Columbia University Press, New YorkGoogle Scholar
  138. Savage-Rumbaugh S, Lewin R (1994) Kanzi: the ape at the brink of the human mind. Wiley, New YorkGoogle Scholar
  139. Savage-Rumbaugh S, Shanker SG, Taylor TJ (1998) Apes, language, and the human mind. Oxford University Press, New YorkGoogle Scholar
  140. Selnes O, Whitaker HA (2006) Anatomical asymmetries versus variability of language areas of the brain. In: Brown K (ed) Encyclopedia of language and linguistics, vol 1. Elsevier, OxfordGoogle Scholar
  141. Soffer O, Odovasio JM, Hyland DC (2000) The 'Venus' figurines: Textiles, basketry, gender, and status in the Upper Paleolithic. Curr Anthropol. 41:511–525Google Scholar
  142. Strausfeld NJ, Homberg U, Kloppenburg P (2000) Parallel organization in honey bee mushroom bodies by peptidergic Kenyon cells. J Comp Neurol 424:179–195PubMedGoogle Scholar
  143. Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward BD, Hammeke TA (2002) Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology 59:238–244PubMedGoogle Scholar
  144. Tattersall I (1998) Becoming human: evolution and human uniqueness. Harcourt Brace, New YorkGoogle Scholar
  145. Teichmann M, Dupoux E, Kouider S, Brugières P, Boissé MF, Baudic S, Cesaro P, Peschanski M, Bachoud-Lévi AC (2005) The role of the striatum in rule application: the model of Huntington’s disease at early stage. Brain 128:1155–1167PubMedGoogle Scholar
  146. Teichmann M, Dupoux E, Cesaro P, Bachoud-Lévi AC (2008) The role of the striatum in sentence processing: evidence from a priming study in early stages of Huntington’s disease. Neuropsychologia 46:174–185PubMedGoogle Scholar
  147. Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA (2004) Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. J Neurosci 24:3152–3163PubMedGoogle Scholar
  148. Thompson RKR, Oden DL (2000) Categorical perception and conceptual judgments by nonhuman primates: the paleological monkey and the analogical ape. Cognitive Sci 24:363–396Google Scholar
  149. Todt D, Hultsch H (1998) How songbirds deal with large amount of serial information: retrieval rules suggest a hierarchical song memory. Biol Cybern 79:487–500Google Scholar
  150. Tomasello M, Carpenter M, Call J, Behne T, Moll H (2005) Understanding and sharing intentions: the origins of cultural cognition. Behav Brain Sci 28:675–691PubMedGoogle Scholar
  151. Trimborn M, Bell SM, Felix C, Rashid Y, Jafri H, Griffiths PD, Neumann LM, Krebs A, Reis A, Sperling K, Neitzel H, Jackson AP (2004) Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am J Hum Genet 75:261–266PubMedCentralPubMedGoogle Scholar
  152. Ulbaek I (1998) The origin of language and cognition. In: Hurford JR, Studdert-Kennedy M, Knight C (eds) Approaches to the evolution of language. Cambridge University Press, CambridgeGoogle Scholar
  153. Ullman MT (2001) The declarative/procedural model of lexicon and grammar. J Psycholinguist Res 30:37–69PubMedGoogle Scholar
  154. Uomini NT (2009) The prehistory of handedness: archaeological data and comparative ethology. J Hum Evol 57:411–419PubMedGoogle Scholar
  155. van Heijningen CAA, de Visser J, Zuidema W, ten Cate C (2009) Simple rules can explain discrimination of putative recursive syntactic structures by a songbird species. PNAS 106:20538–20543PubMedCentralPubMedGoogle Scholar
  156. Vargha-Khadem F, Gadian DG, Copp A, Mishkin M (2005) FOXP2 and the neuroanatomy of speech and language. Nat Rev Neurosci 6:131–138PubMedGoogle Scholar
  157. Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, Alarcón M, Oliver PL, Davies KE, Geschwind DH, Monaco AP, Fisher SE (2008) A functional genetic link between distinct developmental language disorders. N Engl J Med 359:2337–2345PubMedCentralPubMedGoogle Scholar
  158. Vicari S, Finzi A, Menghini D, Marotta L, Baldi S, Petrosini L (2005) Do children with developmental dyslexia have an implicit learning deficit? J Neurol Neurosurg Psychiatry 76:1392–1397PubMedCentralPubMedGoogle Scholar
  159. Walsh D (2007) Development: three grades of ontogenetic involvement. In: Matthen M, Stephens C (eds) Handbook of the philosophy of science, vol 3, Philosophy of Biology. North-Holland, AmsterdamGoogle Scholar
  160. Wang YQ, Su B (2004) Molecular evolution of microcephalin, a gene determining human brain size. Hum Mol Genet 13:1131–1137PubMedGoogle Scholar
  161. Watkins KE, Paus T, Lerch JP, Zijdenbos A, Collins DL, Neelin P, Taylor J, Worsley KJ, Evans AC (2001) Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. Cereb Cortex 11:868–877PubMedGoogle Scholar
  162. West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. PNAS 102:6543–6549PubMedCentralPubMedGoogle Scholar
  163. Wildgen W (2004) The evolution of human language: scenarios, principles, and cultural dynamics. Benjamins, AmsterdamGoogle Scholar
  164. Wilkins WK, Wakefield J (1995) Brain evolution and neurolinguistic preconditions. Behav Brain Sci 18(161–182):205–226Google Scholar
  165. Woods CG (2004) Human microcephaly. Curr Opin Neurobiol 14:1–6Google Scholar
  166. Wynn T, Coolidge FL (2004) The expert Neandertal mind. J Hum Evol 46:467–487PubMedGoogle Scholar
  167. Wynn T, Coolidge FL (2007) Did a small but significant change in working memory capacity empower modern thinking? In: Mellars P, Boyle K, Bar-Yosef O, Stringer S (eds) Rethinking the human evolution: new behavioural and biological perspectives on the origin and dispersal of modern humans. Cambridge University McDonald Institute Monographs, CambridgeGoogle Scholar
  168. Xu X, Lee J, Stern DF (2004) Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. J Biol Chem 279:34091–34094PubMedGoogle Scholar
  169. Zayan R, Vauclair J (1998) Categories as paradigms for comparative cognition. Behav Proces 42:87–99Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Antonio Benítez-Burraco
    • 1
  • Ana Mineiro
    • 2
  • Alexandre Castro-Caldas
    • 2
  1. 1.Department of Spanish Philology and TeachingUniversity of HuelvaHuelvaSpain
  2. 2.Institute of Health SciencesPortuguese Catholic UniversityLisbonPortugal

Personalised recommendations