Skip to main content

Kinetic Equations and Stochastic Game Theory for Social Systems

  • Chapter
Mathematical Models and Methods for Planet Earth

Part of the book series: Springer INdAM Series ((SINDAMS,volume 6))

Abstract

In this paper we present mathematical tools inspired by the kinetic theory, which can be used to model the social behaviors of large communities of individuals. The focus is especially on human societies, such as the population of a certain country, and on the interplays between concurrent social dynamics, for instance economic issues linked to the formation of political opinions, which sometimes can even degenerate into dramatic extreme events with massive impact (Black Swans). Starting from Boltzmann-type models, we present an evolution of the classical approach of statistical mechanics, whose hallmark is the use of stochastic game theory for the description of social interactions. By this we mean that the latter are modeled as games whose payoffs, however, are known only in probability. This is consistent with the basic unpredictability of human reactions, which ultimately cannot be compared to deterministic mechanical-like “collisions”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Unraveling Complex Systems (2011). URL http://www.mathaware.org/mam/2011. Mathematics Awareness Month of the American Mathematical Society, the American Statistical Association, the Mathematical Association of America, and the Society for Industrial and Applied Mathematics

  2. Agrawal, A., Kapur, D., McHale, J.: How do spatial and social proximity influence knowledge flows? Evidence from patent data. J. Urban Econ. 64(2), 258–269 (2008)

    Article  Google Scholar 

  3. Ajmone Marsan, G.: New paradigms towards the modelling of complex systems in behavioral economics. Math. Comput. Modelling 50(3–4), 584–597 (2009)

    Article  Google Scholar 

  4. Ajmone Marsan, G.: On the modelling and simulation of the competition for a secession under media influence by active particles methods and functional subsystems decomposition. Comput. Math. Appl. 57(5), 710–728 (2009)

    Article  Google Scholar 

  5. Ajmone Marsan, G., Bellomo, N., Egidi, M.: Towards amathematical theory of complex socioeconomical systems by functional subsystems representation. Kinet. Relat. Models 1(2), 249–278 (2008)

    Article  Google Scholar 

  6. Ajmone Marsan, G., Bellomo, N., Tosin, A.: Complex Systems and Society-Modeling and Simulation. SpringerBriefs in Mathematics. Springer, New York (2013)

    Google Scholar 

  7. Ariel, R.: Modeling Bounded Rationality. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  8. Arlotti, L., Bellomo, N., De Angelis, E.: Generalized kinetic (Boltzmann) models: mathematical structures and applications. Math. Models Methods Appl. Sci. 12(4), 567–591 (2002)

    Article  Google Scholar 

  9. Arlotti, L., De Angelis, E., Fermo, L., Lachowicz, M., Bellomo, N.: On a class of integrodifferential equations modeling complex systems with nonlinear interactions. Appl. Math. Lett. 25(3), 490–495 (2012)

    Article  Google Scholar 

  10. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. USA 105(4), 1232–1237 (2008)

    Article  CAS  Google Scholar 

  11. Bellomo, N.: Modeling complex living systems-A kinetic theory and stochastic game approach. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2008)

    Google Scholar 

  12. Bellomo, N., Carbonaro, B.: Toward a mathematical theory of living systems focusing on developmental biology and evolution: A review and perspectives. Phys. Life Rev. 8(1), 1–18 (2011)

    Article  CAS  Google Scholar 

  13. Bellomo, N., Herrero, M.A., Tosin, A.: On the dynamics of social conflicts: Looking for the Black Swan. Kinet. Relat. Models 6(3), 459–479 (2013). Open Access http://dx.doi.org/10.3934/krm.2013.6.459

    Article  Google Scholar 

  14. Bellomo, N., Knopoff, D., Soler, J.: On the difficult interplay between life, “complexity”, and mathematical sciences. Math. Models Methods Appl. Sci. 23(10), 1861–1913 (2013)

    Article  Google Scholar 

  15. Bellomo, N., Soler, J.: On the mathematical theory of the dynamics of swarms viewed as complex systems. Math. Models Methods Appl. Sci. 22(suppl. 1), 1140,006 (29 pages) (2012)

    Google Scholar 

  16. Bertotti, M.L., Delitala, M.: Conservation laws and asymptotic behavior of a model of social dynamics. Nonlinear Anal. Real World Appl. 9(1), 183–196 (2008)

    Article  Google Scholar 

  17. Bertotti, M.L., Delitala, M.: On the existence of limit cycles in opinion formation processes under time periodic influence of persuaders. Math. Models Methods Appl. Sci. 18(6), 913–934 (2008)

    Article  Google Scholar 

  18. Bertotti, M.L., Delitala, M.: Cluster formation in opinion dynamics: a qualitative analysis. Z. Angew. Math. Phys. 61(4), 583–602 (2010)

    Article  Google Scholar 

  19. Bertotti, M.L., Modanese, G.: From microscopic taxation and redistribution models to macroscopic income distributions. Phys. A 390(21–22), 3782–3793 (2011)

    Article  Google Scholar 

  20. Bisi, M., Spiga, G., Toscani, G.: Kinetic models of conservative economies with wealth redistribution. Commun. Math. Sci. 7(4), 901–916 (2009)

    Article  Google Scholar 

  21. Comincioli, V., Della Croce, L., Toscani, G.: A Boltzmann-like equation for choice formation. Kinet. Relat. Models 2(1), 135–149 (2009)

    Article  Google Scholar 

  22. Cristiani, E., Piccoli, B., Tosin, A.: Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. In: G. Naldi, L. Pareschi, G. Toscani (eds.) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, pp. 337–364. Birkhäuser, Boston (2010)

    Chapter  Google Scholar 

  23. Düring, B., Markowich, P., Pietschmann, J.F., Wolfram, M.T.: Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465(2112), 3687–3708 (2009)

    Article  Google Scholar 

  24. Goyal, S., Vega-Redondo, F.: Network formation and social coordination. Game Econ. Behav. 50(2), 178–207 (2005)

    Google Scholar 

  25. Helbing, D.: Stochastic and Boltzmann-like models for behavioral changes, and their relation to game theory. Phys. A 193(2), 241–258 (1993)

    Article  Google Scholar 

  26. Helbing, D.: Social Self-Organization. Springer-Verlag, Berlin Heidelberg (2012)

    Book  Google Scholar 

  27. Herbert, S.: Bounded rationality and organizational learning. Organ. Sci. 2(1), 125–134 (1991)

    Article  Google Scholar 

  28. Maldarella, D., Pareschi, L.: Kinetic models for socio-economic dynamics of speculative markets. Phys. A 391(3), 715–730 (2012)

    Article  Google Scholar 

  29. Naldi, G., Pareschi, L., Toscani, G. (eds.): Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2010)

    Google Scholar 

  30. Rubinstein, A.: Modeling Bounded Rationality, Zeuthen Lecture Book, vol. 1. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  31. Taleb, N.N.: The Black Swan: The Impact of the Highly Improbable. Random House, New York City (2007)

    Google Scholar 

  32. Toscani, G.: Kinetic models of opinion formation. Commun. Math. Sci. 4(3), 481–496 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Tosin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tosin, A. (2014). Kinetic Equations and Stochastic Game Theory for Social Systems. In: Celletti, A., Locatelli, U., Ruggeri, T., Strickland, E. (eds) Mathematical Models and Methods for Planet Earth. Springer INdAM Series, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-02657-2_4

Download citation

Publish with us

Policies and ethics