Skip to main content

Memristor, Hodgkin-Huxley, and Edge of Chaos

  • Chapter
Memristor Networks

Abstract

From a pedagogical point of view, the memristor is defined in this tutorial as any 2-terminal device obeying a state-dependent Ohm’s law. This tutorial also shows that from an experimental point of view, the memristor can be defined as any 2-terminal device that exhibits the fingerprints of “pinched” hysteresis loops in the vi plane. It also shows that memristors endowed with a continuum of equilibrium states can be used as non-volatile analog memories. This tutorial shows that memristors span a much broader vista of complex phenomena and potential applications in many fields, including neurobiology. In particular, this tutorial presents toy memristors that can mimic the classic habituation and LTP learning phenomena. It also shows that sodium and potassium ion-channel memristors are the key to generating the action potential in the Hodgkin-Huxley equations, and that they are the key to resolving several unresolved anomalies associated with the Hodgkin-Huxley equations. This tutorial ends with an amazing new result derived from the new principle of local activity, which uncovers a minuscule life-enabling Goldilocks zone, dubbed the edge of chaos, where complex phenomena, including creativity and intelligence, may emerge. From an information processing perspective, this tutorial shows that synapses are locally-passive memristors, and that neurons are made of locally-active memristors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a generalized memristor defined by v=R(x,i)i, or i=G(x,v)v, the vi loci tends to a single-valued nonlinear function as ω→∞ [13].

  2. 2.

    We will use the term generalized memristor to refer to the most general case defined in [10], where the memristance (resp., memductance) R(x,i,t) (resp., G(x,v,t)) may depend also on the input current i (resp., voltage v) and the time t.

  3. 3.

    Here we assume “zero” initial state, i.e. φ(0)=0. Hence \(\varphi(t)=\int_{-\infty}^{t}v(\tau )d\tau =\int_{0}^{t}v(\tau )d\tau\).

  4. 4.

    The original Bliss-Lomo experiment was carried out at the perforant path synapses on the dentate gyrus.

  5. 5.

    Hodgkin and Huxley were awarded the 1961 Nobel Prize in Physiology for this seminal contribution.

  6. 6.

    We caution the readers that these pinched hysteresis loops are different from those shown in Fig. 4 of [4], which were calculated with E K =0, and E Na =0, respectively, in the state equations given in Figs. 11b and 11c. We take this opportunity to alert the readers of [21] that the pinched hysteresis loops in Figs. 11, 12, 17 and 18 are calculated with E K =0 and E Na =0.

  7. 7.

    For certain ideal 2-terminal circuit elements [23, 24], only a DC voltage source (resp., current source) restricted to a limited range of terminal voltages (resp., currents) is admissible. For example, for an ideal diode [23, 24], only a non-positive voltage source (resp., non-negative current source) is allowed (by the definition v=0, i≥0, and i=0, v≤0 of an ideal diode) to be connected across the ideal diode, in order to avoid the pathological situation where the circuit does not have a solution!

  8. 8.

    Our reference voltage polarity for V and current direction for I follow Hodgkin-Huxley’s 1952 paper [20], which are opposite to the prevailing reference convention. The corresponding DC VI curve in conventional reference polarity and direction is obtained by rotating the VI curve in Fig. 15 by 180 degrees.

  9. 9.

    In view of the parallel network topology of Fig. 16b, it is more convenient to analyze the admittance \(Y(s)\triangleq\frac{1}{Z(s)}\) instead of the impedance Z(s). The independent small-signal variable in this case is δv(t).

  10. 10.

    We take this opportunity to alert the readers of [22] of consistently repeated errata in Figs. 14–26, and Fig. 35, where the unit of ω should be rad/ms, and not kHz. This error also occurs in the text on pp. 26–30.

References

  1. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: Nature 453, 80 (2008)

    Article  Google Scholar 

  2. Chua, L.O.: IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  3. Tour, J.M., He, T.: Nature 453, 42 (2008)

    Article  Google Scholar 

  4. Chua, L.O.: Proc. IEEE 100, 1920 (2012)

    Article  Google Scholar 

  5. Chua, L.O.: Proc. IEEE 91, 1830 (2003)

    Article  Google Scholar 

  6. Chua, L.O.: IEEE Trans. Circuits Syst. 27, 1014 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bartle, R.G.: The Elements of Real Analysis, 2nd edn. Wiley, New York (1976)

    MATH  Google Scholar 

  8. Pugh, C.: Real Mathematical Analysis. Springer, New York (2000)

    Google Scholar 

  9. Francis, V.J.: Fundamentals of Discharge Tube Circuits. Methuen, London (1948)

    Google Scholar 

  10. Chua, L.O., Kang, S.M.: Proc. IEEE 64, 209 (1976)

    Article  MathSciNet  Google Scholar 

  11. Adhikari, S.P., Sah, M.P., Kim, H., Chua, L.O.: IEEE Trans. Circuit Syst. I 60, 3008 (2013)

    Article  Google Scholar 

  12. Sapoff, M., Oppenheim, R.M.: Proc. IEEE 51, 1292 (1963)

    Article  Google Scholar 

  13. Corinto, F., Ascoli, A.: Electron. Lett. 48, 824 (2012)

    Article  Google Scholar 

  14. Chua, L.: Appl. Phys. A, Mater. Sci. Process. 102, 765 (2011)

    Article  Google Scholar 

  15. Chua, L.O.: Introduction to Memristor. IEEE Expert Now Educational Course (2009)

    Google Scholar 

  16. Kandel, E.R.: In Search of Memory, vol. 400. Norton, New York (2006)

    Google Scholar 

  17. Bear, M.F., Connors, B.W., Paradiso, M.A.: Neuroscience: Exploring the Brain. Williams & Wilkins, Philadelphia (2007)

    Google Scholar 

  18. Bliss, T.V.P., Lomo, T.: J. Physiol. 232, 331 (1973)

    Google Scholar 

  19. Bliss, T.V.P., Collingridge Morris, R.: LTP Long Term Potentiation. Oxford University Press, Oxford (2004)

    Google Scholar 

  20. Hodgkin, A.L., Huxley, A.F.: J. Physiol. 117, 500 (1952)

    Google Scholar 

  21. Chua, L., Sbitnev, V., Kim, H.: Int. J. Bifurc. Chaos 22, 1230011 (2012)

    Article  Google Scholar 

  22. Chua, L., Sbitnev, V., Kim, H.: Int. J. Bifurc. Chaos 22, 1250098 (2012)

    Article  Google Scholar 

  23. Chua, L.O.: Introduction to Nonlinear Network Theory. McGraw-Hill, New York (1969)

    Google Scholar 

  24. Chua, L.O., Desoer, C.A., Kuh, E.S.: Linear and Nonlinear Circuits. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  25. Cole, K.S.: Membranes, Ions and Impulses. University of California Press, Berkeley (1972)

    Google Scholar 

  26. Chua, L.O.: CNN: A Paradigm for Complexity. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  27. Chua, L.O.: Int. J. Bifurc. Chaos 15, 3435 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mainzer, K., Chua, L.: Local Activity Principle: The Cause of Complexity and Symmetry Breaking. Imperial College Press, London (2013)

    Book  Google Scholar 

  29. Turing, A.M.: Philos. Trans. R. Soc. Lond. B, Biol. Sci. 237, 37 (1952)

    Article  Google Scholar 

  30. Smale, S.: Lecture in Applied Mathematics, vol. 6, p. 15. American Mathematically Society, Providence (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Chua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chua, L. (2014). Memristor, Hodgkin-Huxley, and Edge of Chaos. In: Adamatzky, A., Chua, L. (eds) Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-02630-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02630-5_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02629-9

  • Online ISBN: 978-3-319-02630-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics