Skip to main content

Reaction-Diffusion Media with Excitable Oregonators Coupled by Memristors

  • Chapter
Memristor Networks

Abstract

This chapter presents dynamic behaviors of a new reaction-diffusion-type excitable medium, where the diffusion coefficient is represented by memristive dynamics. The medium consists of an array of excitable Oregonators, and each Oregonator is locally coupled with other Oregonators via memristors, which were claimed to be the fourth circuit element exhibiting a relationship between flux ϕ and charge q. By using the medium, this chapter exhibits that (i) the memristor conductances are modulated by the excitable waves and controlled the velocity of the waves, depending on the memristor’s polarity, and (ii) nonuniform spatial patterns are generated depending on the initial condition of Oregonator’s state, memristor polarity and stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction-Diffusion Computers. Elsevier, London (2005)

    Google Scholar 

  2. Adamatzky, A., Arena, P., Basile, A., Carmona-Galán, R., De Lacy Costello, B., Fortuna, L., Frasca, M., Rodríguez-Vázquez, A.: Reaction-diffusion navigation robot control: from chemical to VLSI analogic processors. IEEE Trans. Circuits Syst. I 51(5), 926–938 (2004)

    Article  Google Scholar 

  3. Asai, T., Nishimiya, Y., Amemiya, Y.: A CMOS reaction-diffusion circuit based on cellular-automaton processing emulating the Belousov-Zhabotinsky reaction. IEICE Trans. Fundam. E 85-A(9), 2093–2096 (2002)

    Google Scholar 

  4. Matsubara, Y., Asai, T., Hirose, T., Amemiya, Y.: Reaction-diffusion chip implementing excitable lattices with multiple-valued cellular automata. IEICE Electron. Express 1(9), 248–252 (2004)

    Article  Google Scholar 

  5. Rekeczky, C., Roska, T., Carmona, R., Jiménez-Garrido, F., Rodríguez-Vázquez, A.: Exploration of spatial-temporal dynamic phenomena in a 32×32-cell stored program two-layer CNN universal machine chip prototype. J. Circuits Syst. Comput. 12(6), 691–710 (2003)

    Article  Google Scholar 

  6. Shi, B.E., Luo, B.T.: Spatial pattern formation via reaction-diffusion dynamics in 32×32×4 CNN chip. IEEE Trans. Circuits Syst. I 51(5), 939–947 (2004)

    Article  Google Scholar 

  7. Asai, T., Kanazawa, Y., Hirose, T., Amemiya, Y.: Analog reaction-diffusion chip imitating the Belousov-Zhabotinsky reaction with hardware Oregonator model. Int. J. Unconv. Comput. 1(2), 123–147 (2005)

    Google Scholar 

  8. Daikoku, T., Asai, T., Amemiya, Y.: An analog CMOS circuit implementing Turing’s reaction-diffusion model. In: Proc. Int. Symp. Nonlinear Theory and Its Applications, pp. 809–812 (2002)

    Google Scholar 

  9. Karahaliloglu, K., Balkir, S.: Bio-inspired compact cell circuit for reaction-diffusion systems. IEEE Trans. Circuits Syst. II 52(9), 558–562 (2005)

    Article  Google Scholar 

  10. Serrano-Gotarredona, T., Linares-Barranco, B.: Log-domain implementation of complex dynamics reaction-diffusion neural networks. IEEE Trans. Neural Netw. 14(5), 1337–1355 (2003)

    Article  Google Scholar 

  11. Gerhardt, M., Schuster, H., Tyson, J.J.: A cellular automaton model of excitable media. Physica D 46, 392–415 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Adamatzky, A.: Computing in Nonlinear Media and Automata Collectives. IoP Publishing, Bristol (2001)

    Book  MATH  Google Scholar 

  13. Oya, T., Asai, T., Fukui, T., Amemiya, Y.: Reaction-diffusion systems consisting of single-electron circuits. Int. J. Unconv. Comput. 1(2), 177–194 (2005)

    Google Scholar 

  14. Asai, T., Adamatzky, A., Amemiya, Y.: Towards reaction-diffusion computing devices based on minority-carrier transport in semiconductors. Chaos Solitons Fractals 20(4), 863–876 (2004)

    Article  MATH  Google Scholar 

  15. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  16. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 452(1), 80–83 (2008)

    Article  Google Scholar 

  17. http://www.scholarpedia.org/article/Oregonator

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research on Innovative Areas [20111004] from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Asai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Asai, T. (2014). Reaction-Diffusion Media with Excitable Oregonators Coupled by Memristors. In: Adamatzky, A., Chua, L. (eds) Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-02630-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02630-5_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02629-9

  • Online ISBN: 978-3-319-02630-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics