Skip to main content

Memristor Bridge-Based Artificial Neural Weighting Circuit

  • Chapter
Book cover Memristor Networks

Abstract

A novel memristor bridge circuit which is able to perform zero, negative and positive synaptic weightings in neuron cells is proposed. It is composed of four memristors and three transistors for weighting operation and voltage-to-current conversion, respectively. It is compact as it can be fabricated in nano meter scale. It is power efficient since it operates in pulse-based. Its input terminals are utilized commonly for applying both weight programming and weight processing signals via time sharing. By programming on each memristor of the memristor bridge circuit, the signed weighting values can be set on the memristor bridge synapses. The features of proposed architecture are investigated via various simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At least one state variable must appear explicitly in the definition of the memristance.

References

  1. The Scientific American Book of the Brain. Scientific American, New York (1999)

    Google Scholar 

  2. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(10), 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35(10), 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

  4. Roska, T., Chua, L.O.: The CNN universal machine: an analogic array computer. IEEE Trans. Circuits Syst. II 40(3), 163–172 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kim, H., Son, H., Roska, T., Chua, L.O.: Optimal path finding with space- and time-variant metric weights with multi-layer CNN. Int. J. Circuits Theory Appl. 30, 247–270 (2002)

    Article  MATH  Google Scholar 

  6. Kim, H., Son, H., Roska, T., Chua, L.O.: High-performance Viterbi decoder with circularly connected 2-D CNN unilateral cell array. IEEE Trans. Circuits Syst. I 52, 2208–2218 (2005)

    Article  MathSciNet  Google Scholar 

  7. Domínguez-Castro, R., et al.: A 0.8-μm CMOS two-dimensional programmable mixed-signal focal-plane array processor with on-chip binary imaging and instructions storage. IEEE J. Solid-State Circuits 32(7), 1013–1026 (1997)

    Article  Google Scholar 

  8. Cruz, J.M., Chua, L.O.: A 16×16 cellular neural network universal chip: the first complete single-chip dynamic computer array with distributed memory and with gray-scale input-output. Analog Integr. Circuits Signal Process. 15, 227–237 (1998)

    Article  Google Scholar 

  9. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  10. Shin, S., Kim, K., Kang, S.M.: Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29(4), 590–598 (2010)

    Article  Google Scholar 

  11. Joglekar, Y.N., Wolf, S.J.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661–675 (2009)

    Article  MATH  Google Scholar 

  12. Kavehei, O., Iqbal, A., Kim, Y.S., Eshraghian, K., Al-Sarawi, S.F., Abboti, D.: The fourth element: characteristics, modelling and electromagnetic theory of the memristor. Proc. R. Soc. A 466(2120), 2175–2202 (2010)

    Article  MATH  Google Scholar 

  13. Wang, F.Y.: Memristor for introductory physics (Aug. 4, 2008) arXiv:0808.0286v1 [physics. Class-ph]

  14. Argall, F.: Switching phenomena in titanium oxide thin films. Solid-State Electron. 11, 535–541 (1968)

    Article  Google Scholar 

  15. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  16. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory CT-18(5), 507–519 (1971)

    Article  Google Scholar 

  17. Itoh, M., Chua, L.O.: Memristor cellular automata and memristor discrete-time cellular neural networks. Int. J. Bifurc. Chaos (IJBC) 19(11), 3605–3656 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kim, H., Sah, M.P., Changju, Y., Chua, L.O.: Memristor-based multilevel memory. In: 12th International Workshop on Cellular Nanoscale Networks and Their Appl. (CNNA), Feb. 2010

    Google Scholar 

  19. Xia, Q., et al.: Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3645 (2009)

    Article  Google Scholar 

  20. Borghettil, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: Memristive switches enable stateful logic operations via material implication. Nat. Lett. 464(8), 873–876 (2010)

    Article  Google Scholar 

  21. Aono, M., Hasegawa, T.: The atomic switch. Proc. IEEE 98(12), 2228–2236 (2010)

    Article  Google Scholar 

  22. Kozicki, M.N., Gopalan, C., Balakrishnan, M., Mitkova, M.: A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte. IEEE Trans. Nanotechnol. 5(5), 535–544 (2006)

    Article  Google Scholar 

  23. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    Article  Google Scholar 

  24. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 1297–1301 (2010)

    Google Scholar 

  25. Snider, G.: Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18(36), 1–13 (2007)

    Article  Google Scholar 

  26. Kund, M., Beitel, G., Pinnow, C.U., Röhr, T., Schumann, R., Symanczyk, R., Ufert, K.D., Müller, G.: Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm. IEDM Tech. Dig. 754–757 (2005)

    Google Scholar 

  27. Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)

    Article  Google Scholar 

  28. Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Sinder, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyongsuk Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O. (2014). Memristor Bridge-Based Artificial Neural Weighting Circuit. In: Adamatzky, A., Chua, L. (eds) Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-02630-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02630-5_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02629-9

  • Online ISBN: 978-3-319-02630-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics