Skip to main content

Introduction

  • Chapter
  • First Online:
  • 531 Accesses

Abstract

This chapter gives a brief introduction into the subject of the book, outlines the content and gathers notations and some mathematical rules that we will often use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.P. Pudasaini, K. Hutter, Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches. (Springer, 2007)

    Google Scholar 

  2. M. Pastor, M. Quecedo, J.A. Fernandez, Meroo, M.I. Herreros, E. Gonzales, P. Mira, Flows of materials with yield. J. Rheol. 31, 385–404 (1987)

    Google Scholar 

  3. L. Cascini, S. Cuomo, M. Pastor, G. Sorbino, Modelling of rainfall-induced shallow landslides of the flow-type catastrophic landslides. J. Geotech. Geoenviron. Eng. 136(1), 85–98 (2010)

    Article  Google Scholar 

  4. L. Cascini, S. Cuomo, M. Pastor, Inception of debris avalanches: remarks on geomechanical modelling. Landslides 10(6), 701–711 (2013)

    Article  Google Scholar 

  5. J.A. Fernandez Merodo, M. Pastor, P. Mira, L. Tonni, M. Quecedo, M.I. Herreros, E. Gonzales, R. Tamagnini, Modelling of diffuse failure mechanisms of catastrophic landslides. Comput. Methods Appl. Mech. Eng. 193(27), 2911–2939 (2004)

    Article  Google Scholar 

  6. R.F. Dressler, New nonlinear shallow flow equations with curvature. J. Hydraul. Res. 16, 205–222 (1978)

    Article  Google Scholar 

  7. S.B. Savage, K. Hutter, The motion of a finite mass of granular material down a rough incline. J. Fluid. Mech. 199, 177–215 (1989)

    Article  Google Scholar 

  8. R.P. Denlinger, R.M. Iverson, Flow of variably fluidised granular masses across three-dimensional terrain. II. J. Geophys. Res. 106, 552–566 (2001)

    Google Scholar 

  9. R.P. Denlinger, R.M. Iverson, Granular avalanches across irregular three-dimensional terrain. I: theory and computation. J. Geophys. Res. 109(F1), (2004)

    Google Scholar 

  10. R.M. Iverson, R.P. Denlinger, Flow of variably fluidised granular masses across three-dimensional terrain. I. Coulomb mixture theory. J. Geophys. Res. 106, 537–552 (2001)

    Google Scholar 

  11. R.M. Iverson, M. Logan, R.P. Denlinger, Granular avalanches across irregular three-dimensional terrain. II: experimental tests. J. Geophys. Res., 109(No. F1):F01015 (2004). doi:10.1029/2003JF000084

  12. A.K. Patra, A.C. Bauer, C.C. Nichita, E.B. Pitman, M.F. Sheridan, M. Bursik, B. Rupp, A. Weber, A. Stinto, L. Namikawa, C. Renschler, Parallel adaptive numerical simulation of dry avalanches over natural terrain. J. Volcanol. Geoth. Res. 139(1–2), 1–21 (2005)

    Article  Google Scholar 

  13. E.B. Pitman, The mechanics of particle-fluid flow at high solids volume fraction, in Proceedings of IUTAM Symposium on Segregation in Granular Materials, ed. by A. Rosato, D. Blackmore (Boston: Kluver, 2000), pp. 241–254

    Google Scholar 

  14. E.B. Pitman, A.K. Patra, A.C. Bauer, C.C. Nichita, M.F. Sheridan, M. Bursik, Computing granular avalanches and landslides. Phys. Fluids 15, 3638–3646 (2003)

    Article  Google Scholar 

  15. M.F. Sheridan, J.L. Macias, Estimation of risk probability for gravity driven pyroclastic flows at Volcano Colima. Mexico. J. Volcanol. Geoth. Res. 66, 251–256 (1995)

    Article  Google Scholar 

  16. M.F. Sheridan, A.J. Stinton, A.K. Patra, E.B. Pitman, A.C. Bauer, C.C. Nichita, Evaluating TITAN2D mass flow using the 1963 Little Tahoma Peak Avalanches. J. Volcanol. Geoth. Res. 139(1–2), 89–102 (2005)

    Article  Google Scholar 

  17. F. Bouchut, A. Mangeney-Castelnau, B. Perthame, J.P. Vilotte, A new model of Saint-Venant and Savage-Hutter type for gravity driven shallow water flows. C. R. Acad. Sci. Paris I336, 531–536 (2003)

    Google Scholar 

  18. A. Mangeney-Castelnau, J.P. Vilotte, M.O. Bristeau, B. Perthame, F. Bouchut, C. Simeoni, S. Yerneni, Numerical modelling of avalanches based on Saint Venant equations using a kinetic scheme. J. Geophys. Res. 108:(B11)2527 (2003)

    Google Scholar 

  19. A. Mangeney, F. Bouchut, N. Thomas, J.P. Vilotte, M.O. Bristeau, Numerical modeling of self channeling granular flows and of their levee/channel deposits. J. Geophys. Res. 112, F02017 (2007)

    Google Scholar 

  20. D. Rickenmann, D. Laigle, B.W. McArdell, J. Hübl, Comparison of 2D debris-flow simulation models with field events. Comput. Geosci. 10, 241–264 (2006)

    Article  Google Scholar 

  21. I.R. Ionescu, Onset and dynamic shallow flow of a viscoplastic fluid on a plane slope. J. Non-Newton. Fluid Mech. 165, 1328–1341 (2010)

    Article  Google Scholar 

  22. J.M.N.T. Gray, A.N. Edwards, A depth-averaged \(\mu (I)\) rheology for shallow granular free surface flows. J. Fluid Mech. 755, 503–534 (2014)

    Google Scholar 

  23. K. Hutter, T. Koch, Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Phil. Trans. R. Soc. A 334, 93–138 (1991)

    Article  Google Scholar 

  24. R. Greve, K. Hutter, Motion of a granular avalanche in a convex and concave curved chute: experiments and theoretical predictions. Phil. Trans. R. Soc. A 342, 573–600 (1993)

    Article  Google Scholar 

  25. R. Greve, T. Koch, K. Hutter, Unconfined flow of granular avalanches along a partly curved surface. I: theory. Proc. R. Soc. A. 445, 399–413 (1994)

    Google Scholar 

  26. J.M.N.T. Gray, M. Wieland, K. Hutter, Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. A. 455, 1841–1874 (1999)

    Article  Google Scholar 

  27. T. Koch, R. Greve, K. Hutter, Unconfined flow of granular avalanches along a partly curved chute, II. Experiments and numerical computations. Proc. R. Soc. A. 445, 415–435 (1994)

    Google Scholar 

  28. M. Wieland, J.M.N.T. Gray, K. Hutter, Channelized free surface flow of cohessionless granular avalanches in a chute with shallow lateral curvature. J. Fluid Mech. 392, 73–100 (1999)

    Article  Google Scholar 

  29. S.P. Pudasaini, W. Eckart, K. Hutter, Gravity-driven rapid shear flows of dry granular masses in helically curved and twisted channels. Math. Mod. Meth. Appl. Sci. 13(7), 1019–1052 (2003)

    Article  Google Scholar 

  30. S.P. Pudasaini, K. Hutter, Rapid shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495, 193–208 (2003)

    Article  Google Scholar 

  31. S.P. Pudasaini, Y. Wang, K. Hutter, Rapid motions of free-surface avalanches down curved and twisted channels and their numerical simulations. Phil. Trans. R. Soc. A. 363, 1551–1571 (2005)

    Article  Google Scholar 

  32. S.P. Pudasaini, Y. Wang, K. Hutter, Dynamics of avalanches along general mountain slopes. Ann. Glacol. 38, 357–362 (2005)

    Article  Google Scholar 

  33. S.P. Pudasaini, Y. Wang, L.T. Sheng, Y.C. Tai, S.H. Chou, S.S. Hsiau, K. Hutter, Avalanching granular flow down curved and twisted channels: theory and particle tracking velocimetry (PTV) experiments, Department of Mechanics, Darmstadt University of Technology, Preprint, 2005

    Google Scholar 

  34. N.S. Sivakumaran, R.F. Dressler, Unsteady density-current equations for highly curved terrain. J. Atmos. Sci. 46(20), 3192–3201 (1989)

    Article  Google Scholar 

  35. R.C. Berger, G.F. Carey, A perturbation anlysis and finite element approximate model for free surafce flows over curved beds. Int. J. Num. Meth. Eng. 31, 493–507 (1991)

    Article  Google Scholar 

  36. B.J. Dewals, S. Erpicum, P. Archambau, S. Detrembleur, M. Pirotton, Depth-integrated flow modeling taking into account bottom curvature. J. Hydraul. Res. 44, 785–795 (2006)

    Article  Google Scholar 

  37. S. De Toni, P. Scotton, Two-dimensional mathematical and numerical model for the dynamics of granular avalanches. Cold Reg. Sci. Technol. 43, 36–48 (2005)

    Article  Google Scholar 

  38. F. Bouchut, M. Westdickenberg, Gravity driven shallow water models for arbitrary topography. Comm. Math. Sci. 2(3), 359–389 (2004)

    Article  Google Scholar 

  39. D. Issler, Depth-averaged flow models on arbitrarily curved topography, pp.1–39 (2007). http://snf.ngi.no/reports/issler_Curvature.pdf

  40. I.R. Ionescu, Viscoplastic shallow flow equations with topography. J. Non-Newton. Fluid Mech. 193, 116–128 (2013)

    Article  Google Scholar 

  41. W.H. Hui, S. Koudriakov, Computation of the shallow water equations using the unified coordinates. SIAM J. Sci. Comput. 23, 1615 (2002)

    Article  Google Scholar 

  42. W.H. Hui, The unified coordinate system in computational fluid dynamics. Commun. Comput. Phys. 2(4), 577–610 (2007)

    Google Scholar 

  43. W.H. Hui, K. Xu, Computational Fluid Dynamics Based on the Unified Coordinates (Springer, Berlin, 2012)

    Book  Google Scholar 

  44. K. Hutter, I. Luca, Two-layer debris mixture flows on arbitrary terrain with mass exchange at the base and the interface. Continuum Mech. Thermodyn. 24(4–6), 525–558 (2012)

    Google Scholar 

  45. I. Luca, K. Hutter, C.Y. Kuo, Y.C. Tai, Two-layer models for shallow avalanche flows over arbitrary variable topography. Int. J. Adv. Eng. Sci. Appl. Math. 1, 99–121 (2009)

    Article  Google Scholar 

  46. I. Luca, Y.C. Tai, C.Y. Kuo, Non-Cartesian topography-based avalanche equations and approximations of gravity driven flows of ideal and viscous fluids. Math. Mod. Meth. Appl. Sci. 19, 127–171 (2009)

    Article  Google Scholar 

  47. Y.C. Tai, C.Y. Kuo, A new model of granular flows over general topography with erosion and deposition. Acta Mech. 199, 71–96 (2008)

    Article  Google Scholar 

  48. Y.C. Tai, C.Y. Kuo, W.H. Hui, An alternative depth-integrated formulation for granular avalanches over temporally varying topography with small curvature. Geophys. Astrophys. Fluid Dyn. 106(6), 596–629 (2012)

    Article  Google Scholar 

  49. I. Luca, Y.C. Tai, C.Y. Kuo, Modelling shallow gravity-driven solid-fluid mixtures over arbitrary topography. Comm. Math. Sci. 7(1), 1–36 (2009)

    Article  Google Scholar 

  50. I. Luca, C.Y. Kuo, K. Hutter, Y.C. Tai, Modeling shallow over-saturated mixtures on arbitrary rigid topography. J. Mech. 28(3), 523–541 (2012)

    Article  Google Scholar 

  51. I. Luca, K. Hutter, Y.C. Tai, C.Y. Kuo, A hierarchy of avalanche models on arbitrary topography. Acta Mech. 205, 121–149 (2009)

    Article  Google Scholar 

  52. K. Hutter, S. B. Savage. Avalanche dynamics: the motion of a finite mass of gravel down a mountain side, in Proceedings of the 5th International Symposium on Landslides (Lausanne, 1988), pp. 691–697

    Google Scholar 

  53. S.B. Savage, K. Hutter, The dynamics of avalanches of granular materials from initiation to runout. Part I: analysis. Acta Mech. 86, 201–223 (1991)

    Google Scholar 

  54. F. Bouchut, E.D. Fernández-Nieto, A. Mangeney, P.-Y. Lagrée, On new erosion models of Savage-Hutter type for avalanches. Acta Mech. 199, 181–208 (2008)

    Article  Google Scholar 

  55. H. Nessyahu, E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)

    Article  Google Scholar 

  56. G.S. Jiang, E. Tadmor, Non-oscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19(6), 1892–1917 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioana Luca .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luca, I., Tai, YC., Kuo, CY. (2016). Introduction. In: Shallow Geophysical Mass Flows down Arbitrary Topography. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-02627-5_1

Download citation

Publish with us

Policies and ethics