Skip to main content

Inference of Genetic Regulatory Networks Using an Estimation of Distribution Algorithm

  • Conference paper
Advances in Bioinformatics and Computational Biology (BSB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8213))

Included in the following conference series:

  • 941 Accesses

Abstract

Inference of Genetic Regulatory Networks from sparse and noisy expression data is still a challenge nowadays. In this work we use an Estimation of Distribution Algorithm to infer Genetic Regulatory Networks. In order to evaluate the algorithm we apply it to three types of data: (i) data simulated from a multivariate Gaussian distribution, (ii) data simulated from a realistic simulator, GeneNetWeaver and (iii) data from flow cytometry experiments. The proposed inference method shows a performance comparable with traditional inference algorithms in terms of the network reconstruction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9(1), 67–103 (2002)

    Article  Google Scholar 

  2. D’haeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8), 707–726 (2000)

    Article  Google Scholar 

  3. Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations. In: Pacific Symposium on Biocomputing, vol. 4, pp. 29–40 (1999)

    Google Scholar 

  4. Pokhilko, A., Fernández, A.P., Edwards, K.D., Southern, M.M., Halliday, K.J., Millar, A.J.: The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Molecular Systems Biology 8, 574 (2012)

    Article  Google Scholar 

  5. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America 95, 14863–14868 (1998)

    Article  Google Scholar 

  6. Heckerman, D.: Learning Gaussian networks. Technical Report MSR-TR-94-10, Microsoft Research, Redmond, Washington (July 1994)

    Google Scholar 

  7. Heckerman, D.: A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, Redmond, Washington (1995)

    Google Scholar 

  8. Chen, Y.P., Yu, T.L., Sastry, K., Goldberg, D.E.: A survey of linkage learning techniques in genetic and evolutionary algorithms. Technical Report IlliGAL Report No. 2007014, University of Illinois at Urbana-Champaign (2007)

    Google Scholar 

  9. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer (2002)

    Google Scholar 

  10. Emmendorfer, L.R., Pozo, A.: Effective linkage learning using low-order statistics and clustering. IEEE Transactions on Evolutionary Computation 13(6), 1233–1246 (2009)

    Article  Google Scholar 

  11. Larrañaga, P., Karshenas, H., Bielza, C., Santana, R.: A review on evolutionary algorithms in Bayesian network learning and inference tasks. Inf. Sci. 233, 109–125 (2013)

    Article  Google Scholar 

  12. Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm. In: International Conference on Machine Learning, pp. 38–46 (1995)

    Google Scholar 

  13. Mühlenbein, H., PaaB, G.: From Recombination of Genes to the Estimation of Distributions I. Binary Parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  14. Bonet, J.S.D., Isbell, C.L., Viola, P.: Mimic: Finding optima by estimating probability densities. In: Jordan, M., Mozer, M., Perrone, M. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 424–430. MIT Press, Cambridge (1997)

    Google Scholar 

  15. Mühlenbein, H.: The equation for response to selection and its use for prediction. Evol. Comput. 5(3), 303–346 (1997)

    Article  Google Scholar 

  16. Pelikan, M., Goldberg, D.E., Cantu-Paz, E.: BOA: The Bayesian optimization algorithm. In: Proceedings of the 1999 Genetic and Evolutionary Computation Conference, pp. 525–532 (1999)

    Google Scholar 

  17. Etxeberria, R., Larrañaga, P.: Global optimization using Bayesian networks. In: Second Symposium on Artificial Intelligence (CIMAF 1999), pp. 332–339 (1999)

    Google Scholar 

  18. González, C., Lozano, J.A., Larrañaga, P.: Analyzing the PBIL algorithm by means of discrete dynamical systems. Complex Systems 4, 465–479 (2000)

    Google Scholar 

  19. Zhang, Q.: On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm. IEEE Transactions on Evolutionary Computation 8(1), 80–93 (2004)

    Article  Google Scholar 

  20. Pelikan, M., Saltry, K., Goldberg, D.E.: Sporadic model building for efficiency enhancement of hBOA. Genetic Programming and Evolvable Machines (2008)

    Google Scholar 

  21. Emmendorfer, L.R., Pozo, A.T.R.: An incremental approach for niching and building block detection via clustering. In: Proceedings of the Seventh International Conference on Intelligent Systems Design and Applications, ISDA 2007, pp. 303–308. IEEE Computer Society, Washington, DC (2007)

    Chapter  Google Scholar 

  22. Baluja, S.: Population-based incremental learning. Technical Report CMU-CS-94-163, Computer Science Dept., Carnegie Mellon University (1994)

    Google Scholar 

  23. Georges, R., Harik, F.G.L., Goldberg, D.E.: The compact genetic algorithm. IEEE Trans. Evolutionary Computation 3(4), 287–297 (1999)

    Article  Google Scholar 

  24. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)

    Article  Google Scholar 

  25. Schaffter, T., Marbach, D., Floreano, D.: GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16), 2263–2270 (2011)

    Article  Google Scholar 

  26. Dougherty, M.K., Müller, J., Ritt, D.A., Zhou, M., Zhou, X.Z., Copeland, T.D., Conrads, T.P., Veenstra, T.D., Lu, K.P., Morrison, D.K.: Regulation of Raf-1 by direct feedback phosphorylation. Molecular Cell 17, 215–224 (2005)

    Article  Google Scholar 

  27. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  28. Werhli, A.V., Grzegorczyk, M., Husmeier, D.: Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 22(20), 2523–2531 (2006)

    Article  Google Scholar 

  29. Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271–2282 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Salvá, T., Emmendorfer, L.R., Werhli, A.V. (2013). Inference of Genetic Regulatory Networks Using an Estimation of Distribution Algorithm. In: Setubal, J.C., Almeida, N.F. (eds) Advances in Bioinformatics and Computational Biology. BSB 2013. Lecture Notes in Computer Science(), vol 8213. Springer, Cham. https://doi.org/10.1007/978-3-319-02624-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02624-4_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02623-7

  • Online ISBN: 978-3-319-02624-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics